Objective: Macrophage migration inhibitory factor (MIF) is an important modulator of innate and adaptive immunity as well as local inflammatory responses. We previously reported that MIF down-regulated osteoclastogenesis through a mechanism that requires CD74. The aim of the current study was to examine whether MIF modulates osteoclastogenesis through Lyn phosphorylation, and whether down-regulation of RANKL-mediated signaling requires the association of CD74, CD44, and Lyn.

Methods: CD74-knockout (CD74-KO), CD44-KO, and Lyn-KO mouse models were used to investigate whether Lyn requires these receptors and coreceptors. The effects of MIF on osteoclastogenesis were assessed using Western blot analysis, small interfering RNA (siRNA)-targeted down-regulation of Lyn, Lyn-KO mice, and real-time imaging of Lyn molecules to surface proteins.

Results: MIF treatment induced Lyn expression, and MIF down-regulated RANKL-induced activator protein 1 (AP-1) and the Syk/phospholipase Cγ cascade during osteoclastogenesis through activated Lyn tyrosine kinase. The results of immunoprecipitation studies revealed that MIF receptors associated with Lyn in response to MIF treatment. Studies using Lyn-specific siRNA and Lyn-KO mice confirmed our findings.

Conclusion: Our findings indicate that the tyrosine kinase Lyn is activated when MIF binds to its receptor CD74 and its coreceptor CD44 and, in turn, down-regulates the RANKL-mediated signaling cascade by suppressing NF-ATc1 protein expression through down-regulation of AP-1 and calcium signaling components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146704PMC
http://dx.doi.org/10.1002/art.38723DOI Listing

Publication Analysis

Top Keywords

tyrosine kinase
12
lyn
9
mif
9
macrophage migration
8
migration inhibitory
8
inhibitory factor
8
lyn tyrosine
8
mouse models
8
mif down-regulated
8
rankl-mediated signaling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!