Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282320 | PMC |
http://dx.doi.org/10.1111/pce.12377 | DOI Listing |
Int J Biol Macromol
December 2024
Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China. Electronic address:
Moso bamboo is renowned for its exceptional growth rate, driven by rapid cell proliferation and elongation in culm internodes. This study uncovers the novel role of brassinosteroids (BRs) in regulating bamboo shoot growth, revealing a previously unknown negative correlation between BR levels and growth rates. Notably, we identify BRASSINAZOLE RESISTANT1 (BZR1) acts as a key transcription factor in BR signaling, governing the expression of genes involved in BR biosynthesis and growth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
School of Life Sciences, Southwest University, Chongqing 400715, China.
Plant Sci
February 2025
Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Light spectrum plays an essential role in influencing the growth and development of vegetable seedlings in industrial seedling raising. Currently, blue light, red light, and their combination are utilized in industrial seedling raising. However, the theoretical basis behind the screening of red and blue light combinations remains unclear.
View Article and Find Full Text PDFHortic Res
November 2024
Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel.
In cannabis seedlings, the initiation of solitary flowers is photoperiod-independent. However, when cannabis reaches the adult stage, short-day photoperiod (SD) triggers branching of the shoot apex and a reduction in internode length, leading to development of a condensed inflorescence. We demonstrate that SD affects cannabis plants in two distinct phases: the first includes rapid elongation of the internodes and main stem, and occurring from Day 5 to Day 10 of plant cultivation under SD; in the second phase, elongation of newly developed internodes ceases, and a condensed inflorescence is formed.
View Article and Find Full Text PDFPhysiol Plant
November 2024
College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!