Preclinical Research Oxidized low-density lipoprotein (ox-LDL) is implicated in many inflammatory diseases, e.g., type 2 diabetes, obesity, atherosclerosis, and metabolic syndrome. We previously reported that a synthetic biotinylated peptide, BP21, inhibits the bioactivity of ox-LDL via direct binding to ox-LDL. Here, we investigated the effect of BP21 on the mRNA expression of proinflammatory mediators induced by two major components of ox-LDL, oxidized- and lyso-phosphatidylcholine (ox-PC and LPC), in monocytes/macrophages (THP-1 cells) and adipocytes (3T3-L1 cells). In THP-1 cells, BP21 markedly reduced the mRNA expression of interleukin (IL)-6, adipocyte fatty acid-binding protein (aP2), tumor necrosis factor-α, and mitogen-activated protein kinase phosphatase-1, which are induced by one of the major bioactive components of ox-PC, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), and reduced the mRNA expression of IL-6, the ox-LDL-specific scavenger receptor CD36, and aP2 induced by LPC. In adipocytes, the mRNA expression of IL-1β as an adipokine and aP2 is highly induced by ox-PC and LPC, and BP21 markedly reduced the mRNA expression of IL-1β and aP2 induced by POVPC and LPC. Furthermore, BP21 specifically bound to LPC and POVPC in a dose-dependent manner. These results suggest that BP21 may be useful lead for the potential treatment and prevention of inflammatory diseases caused by ox-PC and LPC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ddr.21178 | DOI Listing |
J Hematol Oncol
January 2025
Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong, 276000, China.
Background: The endoplasmic reticulum stress (ER stress) has been involved in various musculoskeletal disorders including non-traumatic osteonecrosis of femoral head (NT-ONFH).
Objective: The current study aimed to investigate the association of glucose-regulated protein 78 (GRP78) as well as CCAAT/enhancer-binding protein homologous protein (CHOP) expressions in serum and femoral head (FH) tissues with NT-ONFH's severity.
Methods: We enrolled NT-ONFH patients (n = 150) alongside healthy controls (HCs, n = 150).
J Nanobiotechnology
January 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
Background: The rapid mutation of avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Herein, we have successfully developed an mRNA-LNPs candidate vaccine for H5 subtype highly pathogenic avian influenza and evaluated its immunogenicity and protective efficacy.
Results: In experiments on BALB/c mice, the vaccine candidate elicited strong humoral and a certain cellular immune responses and protected mice from the heterologous AIV challenge.
BMC Microbiol
January 2025
Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.
Background: Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD), and can cause severe cerebral complications and even fatality in children younger than 5 years old. However, there is no specific medication for EV71 infection in clinical practice. Our previous studies had identified the 6-thioguanine (6-TG), an FDA-approved anticancer drug, as a potential antiviral agent, but its anti-EV71 activity is largely unknown, therefore, we aim to explore the antiviral effect of 6-TG on EV71.
View Article and Find Full Text PDFSci Rep
January 2025
International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.
To meet the requirements of the biopharmaceutical industry, improving the yield of recombination therapeutic protein (RTP) from Chinese hamster ovary (CHO) cells is necessary. The human cytomegalovirus (CMV) promoter is widely used for RTP expression in CHO cells. To further improve RTP production, we truncated the human CMV intron and further evaluated the effect of four synthetic introns, including ctEF-1α first, EF-1α first, chimeric, and β-globin introns combined with the CMV promoter on recombinant expression levels in transient and stably recombinant CHO cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!