A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves. | LitMetric

Background: Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. One of the successful methods to prevent of the onset of diabetes is to control postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in the aggressive delay of the carbohydrate digestion of absorbable monosaccharides. The aim of the present study is to investigate the effect of the extract of the leaves of Moringa stenopetala on α-glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase activities, and, therefore find out the relevance of the plant in controlling blood sugar and lipid levels.

Methods: The dried leaves of Moringa stenopetala were extracted with hydroalcoholic solvent and dried using rotary vapor under reduced pressure. The dried extracts were determined for the total phenolic compounds, flavonoid content and condensed tannins content by using Folin-Ciocateu's reagent, AlCl3 and vanillin assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively.

Results: The phytochemical analysis indicated that flavonoid, total phenolic, and condensed tannin contents in the extract were 71.73 ± 2.48 mg quercetin equivalent/g of crude extract, 79.81 ± 2.85 mg of gallic acid equivalent/g of crude extract, 8.82 ± 0.77 mg catechin equivalent/g of crude extract, respectively. The extract inhibited intestinal sucrase more than intestinal maltase with IC50 value of 1.47 ± 0.19 mg/ml. It also slightly inhibited pancreatic α-amylase, pancreatic lipase and pancreatic cholesterol esterase.

Conclusion: The result demonstrated the beneficial biochemical effects of Moringa stenopetala by inhibiting intestinal α-glucosidase, pancreatic cholesterol esterase and pancreatic lipase activities. A daily supplement intake of the leaves of Moringa stenopetala may help in reducing hyperglycemia and hyperlipidemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096440PMC
http://dx.doi.org/10.1186/1472-6882-14-180DOI Listing

Publication Analysis

Top Keywords

moringa stenopetala
24
α-glucosidase pancreatic
16
pancreatic α-amylase
16
intestinal α-glucosidase
12
leaves moringa
12
pancreatic lipase
12
pancreatic cholesterol
12
equivalent/g crude
12
crude extract
12
pancreatic
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!