Insulin-like growth factor 2 and its enterocyte receptor are not required for adaptation in response to massive small bowel resection.

J Pediatr Surg

Division of Pediatric Surgery, St Louis Children's Hospital, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Published: June 2014

Purpose: Enhanced structural features of resection-induced intestinal adaptation have been demonstrated following the administration of multiple different growth factors and peptides. Among these, the insulin-like growth factor (IGF) system has been considered to be significant. In this study, we employ mutant mouse strains to directly test the contribution of IGF2 and its enterocyte receptor (IGF1R) toward the adaptation response to massive small bowel resection (SBR).

Methods: IGF2-knockout (IGF2-KO) (n=8) and intestine specific IGF1R-knockout mice (IGF1R-IKO) (n=9) and their wild type (WT) littermates (n=5, n=7, respectively) underwent 50% proximal SBR. At post-operative day 7, structural adaptation was measured as crypt depth and villus height. Rates of enterocyte proliferation and apoptosis were also recorded.

Results: The successful deletion of IGF2 and IGF1R expression in the enterocytes was confirmed by RT-PCR and Western blot, respectively. Normal adaptation occurred in both IGF2-KO and IGF1R-IKO mice after 50% SBR. Post-operative rates of proliferation and apoptosis in both IGF2-KO and IGF1R-IKO mice were no different than their respective controls.

Conclusion: IGF2 and functional IGF1R signaling in enterocytes are both dispensable for resection-induced adaptation responses. The mechanism for IGF-stimulation of intestinal adaptation may involve other ligands or cellular compartments within the intestine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4044537PMC
http://dx.doi.org/10.1016/j.jpedsurg.2014.01.035DOI Listing

Publication Analysis

Top Keywords

insulin-like growth
8
growth factor
8
enterocyte receptor
8
adaptation response
8
response massive
8
massive small
8
small bowel
8
bowel resection
8
intestinal adaptation
8
sbr post-operative
8

Similar Publications

Efficacy of cartilage-targeted IGF-1 in a mouse model of growth hormone insensitivity.

Front Endocrinol (Lausanne)

January 2025

Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States.

Recombinant human IGF-1 is used to treat severe primary IGF-1 deficiency, but this treatment requires twice-daily injection, often does not fully correct the growth deficit, and has important off-target effects. We therefore sought to target IGF-1 to growth plate cartilage by generating fusion proteins combining IGF-1 with single-chain human antibody fragments that target matrilin-3, a cartilage matrix protein. We previously showed that this cartilage-targeting IGF-1 fusion protein (CV1574-1) promoted growth plate function in a GH-deficient (lit) mouse model.

View Article and Find Full Text PDF

Dental pulp stem cell-derived intracellular vesicles prevent orthodontic relapse by inhibiting PI3K/Akt/NF-κB-mediated osteoclast activity.

Stem Cell Res Ther

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.

Background: Orthodontic relapse, the undesired deviation of teeth from their corrected positions, remains a significant challenge in clinical orthodontics. Incomplete periodontal bone remodeling has been identified as a key factor in this process. Despite decades of research, currently there are no effective strategies to prevent relapse.

View Article and Find Full Text PDF

Gut Microbiota-Bone Axis.

Ann Nutr Metab

January 2025

Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy.

Background: Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest.

Summary: Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis.

View Article and Find Full Text PDF

The toxicity of tris (2-butoxyethyl) phosphate (TBOEP) has been extensively investigated because of its prevalence in the environment. Nevertheless, the risk factors associated with maternal transmission are poorly understood. In this study, sexually mature female zebrafish were treated with TBOEP (0, 20, 100, and 500 μg/L) for 30 days and were mated with unexposed males.

View Article and Find Full Text PDF

While Pacific oysters are important commercial aquaculture species worldwide, the effect of hormonal regulation and environmental conditions on growth and taste profile have not been fully known. Insulin-like growth factor (IGF) systems are known to play a major role in regulating neuroendocrine functions across various physiological processes and are particularly involved in growth. IGFs expression also is directly related to the nutritional status of vertebrates, however, full mechanism has not been clearly identified in bivalves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!