The concept of transport energy is the most transparent theoretical approach to describe hopping transport in disordered systems with steeply energy dependent density of states (DOS), in particular in organic semiconductors with Gaussian DOS. This concept allows one to treat hopping transport in the framework of a simple multiple-trapping model, replacing the mobility edge by a particular energy level called the transport energy. However, there is no consensus among researchers on the position of this transport level. In this article, we suggest a numerical procedure to find out the energy level most significantly contributing to charge transport in organic semiconductors. The procedure is based on studying the effects of DOS modifications on the charge carrier mobility in straightforward computer simulations. We also show why the most frequently visited energy, computed in several numerical studies to determine the transport energy, is not representative for charge transport.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/26/25/255801DOI Listing

Publication Analysis

Top Keywords

organic semiconductors
12
transport energy
12
transport
9
energy
8
position transport
8
hopping transport
8
energy level
8
charge transport
8
energy position
4
transport path
4

Similar Publications

Physical vapor deposition is widely used in the fabrication of organic light-emitting diodes and has the potential to adjust the density and orientation through substrate temperature control, which may lead to enhanced electrical performance. However, it is unclear whether this enhanced property is because of the horizontal molecular orientation or the increased density. The effects of the density and orientation on the electrical properties of a potential electron transport material, (3-dibenzo[c,h]acridin-7-yl)phenyl)diphenylphosphine oxide (TPPO-dibenzacridine), were investigated.

View Article and Find Full Text PDF

To solve the energy crisis and environmental issues, it is essential to create effective and sustainable energy conversion and storage technologies. Traditional materials for energy conversion and storage however have several drawbacks, such as poor energy density and inadequate efficiency. The advantages of MOF-based materials, such as pristine MOFs, also known as porous coordination polymers, MOF composites, and their derivatives, over traditional materials, have been thoroughly investigated.

View Article and Find Full Text PDF

g-CN Modified with Metal Sulfides for Visible-Light-Driven Photocatalytic Degradation of Organic Pollutants.

Molecules

January 2025

Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary.

Graphitic carbon nitride (g-CN) proved to be a promising semiconductor for the photocatalytic degradation of various organic pollutants. However, its efficacy is limited by a fast electron hole recombination, a restricted quantity of active sites, and a modest absorption in the visible range. To overcome these limitations, g-CN-BiS and g-CN-ZnS composites were effectively produced utilizing a starch-assisted technique.

View Article and Find Full Text PDF

Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!