Notch1 signaling controls cell proliferation, apoptosis and differentiation in lung carcinoma.

Lung Cancer

Department of Pathology and Experimental Medicine, Kumamoto University, Graduate School of Medical Sciences, Japan. Electronic address:

Published: August 2014

Objectives: The role of Notch signaling in human lung cancer still remains unclear, and there has been and stills a debate, on the extent to which Notch ligands and receptors are involved in lung cancer development. This study was carried out to investigate the role of Notch1 signaling in the proliferation and differentiation of human lung cancer cells.

Methods: We used small interfering RNA (siRNA) technology to down-regulate the expression of Notch1 in small cell lung carcinoma (SCLC) cells; H69AR and SBC-3, as well as in non-small cell lung carcinoma (NSCLC) cells; A549 adenocarcinoma (ADC) and H2170 squamous cell carcinoma (SCC). Also, we transfected venus Notch1 intracellular domain (v.NICD) plasmid into the human SCLC line H69 and H1688. In addition, H1688 cells with activated Notch1 were injected into immune-compromised Rag2(-/-) Jak3(-/-) mice for analysis of ex vivo tumor growth and differentiation phenotype.

Results: Notch1 controls cell proliferation and apoptosis in both SCLC and A549; but not in H2170 cell line. Overexpression of Notch1 in SCLC markedly decreased cell proliferation via apoptosis. The subcutaneous tumors arising from xenotransplaned SCLC cells transfected with Notch1 showed "epithelial-like glandular" arrangement, with positive Alcian blue staining and reduction in neuroendocrine markers.

Conclusion: Notch1 up regulation has an inhibitory effect on cell growth and NE differentiation in SCLC, with induction of an epithelial-like morphology of cells in tissue samples. In NSCLC, Notch1 expression has a tumor inhibitory effect on ADC cells, but not SCC cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lungcan.2014.05.001DOI Listing

Publication Analysis

Top Keywords

cell proliferation
12
proliferation apoptosis
12
lung carcinoma
12
lung cancer
12
notch1
10
notch1 signaling
8
cell
8
controls cell
8
human lung
8
cell lung
8

Similar Publications

Background: Cryoablation induces antitumor immune responses. Spatial transcriptomic landscape technology has been used to determine the micron-level panoramic transcriptomics of tissue slices in situ.

Methods: The effects of cryoablation on the immune microenvironment in non-small cell lung cancer (NSCLC) were explored by comparing the Whole Transcriptome Atlas (WTA) panel of immune cells before and after cryoablation using the spatial transcriptomic landscape.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive.

Methods: We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC.

View Article and Find Full Text PDF

Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.

View Article and Find Full Text PDF

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) protein is located in the mitochondria and can regulate cell proliferation. Some studies have shown that the high NDUFA4L2 expression is linked with poor prognosis and cancer progression in various patients with cancers. However, the correlation between NDUFA4L2 and pan-cancer is unknown.

View Article and Find Full Text PDF

Purpose: Mammary carcinoma is comprised heterogeneous groups of cells with different metastatic potential. 4T1 mammary carcinoma cells metastasized to heart (4THM), liver (4TLM) and brain (4TBM) and demonstrate cancer-stem cell phenotype. Using these cancer cells we found thatTGF-β is the top upstream regulator of metastatic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!