The primary attribute of interest of surface nanobubbles is their unusual stability and a number of theories trying to explain this have been put forward. Interestingly, the dissolution of nanobubbles is a topic that did not receive a lot of attention yet. In this work we applied two different experimental procedures which should cause gaseous nanobubbles to completely dissolve. In our experiments we nucleated nanobubble-like objects by putting a drop of water on HOPG using a plastic syringe and a disposable needle. In method A, the nanobubble-like objects were exposed to a flow of degassed water (1.17 mg l(-1)) for 96 hours. In method B, the ambient pressure was lowered in order to degas the liquid and the nanobubble-like objects. Interestingly, the nanobubble-like objects remained stable after exposure to both methods. After thorough investigation of the procedures and materials used during our experiments, we found that the nanobubble-like objects were induced by the use of disposable needles in which PDMS contaminated the water. It is very important for the nanobubble community to be aware of the fact that, although features look and behave like nanobubbles, in some cases they might in fact be induced by contamination. The presence of contamination could also resolve some inconsistencies found in the nanobubble literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4sm00316k | DOI Listing |
Langmuir
November 2016
School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China.
Surface nanobubbles, which are the main gaseous state forming at the solid/liquid interface, have received extensive attention due to their peculiar features and potential applications. Nano/micro pancakes and interfacial gas enrichment (IGE) are observed at the water-solid interface, which suggest nanobubbles may coexist with IGE. An intuitive case for the coexistence of nanobubbles and IGE is the nanobubble-on-pancake-like objects.
View Article and Find Full Text PDFLangmuir
November 2016
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China.
The puzzling persistence of nanobubbles breaks Laplace's law for bubbles, which is of great interest for promising applications in surface processing, H and CO storage, water treatment, and drug delivery. So far, nanobubbles have mostly been reported on hydrophobic planar substrates with atomic flatness. It remains a challenge to quantify nanobubbles on rough and irregular surfaces because of the lack of a characterization technique that can detect both the nanobubble morphology and chemical composition inside individual nanobubble-like objects.
View Article and Find Full Text PDFSoft Matter
July 2014
Materials Innovation Institute (M2i), 2628 CD Delft, The Netherlands.
The primary attribute of interest of surface nanobubbles is their unusual stability and a number of theories trying to explain this have been put forward. Interestingly, the dissolution of nanobubbles is a topic that did not receive a lot of attention yet. In this work we applied two different experimental procedures which should cause gaseous nanobubbles to completely dissolve.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!