Gold-cellobiose nanocomposites (GCNCs) were synthesized by reducing gold salt with a polysaccharide, cellobiose. Here, cellobiose acted as a controller of nucleation or stabilizer in the formation of gold nanoparticles. The obtained GCNCs were characterized with UV-visible spectroscopy; Zetasizer and Fourier transform infrared (FT-IR) spectrophotometer. Moreover, 6-Mercapto-1-hexanol (MCH) was modified on GCNCs, and the MCH-GCNCs were used to determine the cellobiase activity in compost extracts based on the surface plasmon resonance (SPR) property of MCH-GCNCs. The degradation of cellobiose on MCH-GCNCs by cellobiase could induce the aggregation, and the SPR absorption wavelength of MCH-GCNCs correspondingly red shifted. Thus, the absorbance ratio of treated MCH-GCNCs (A650/A520) could be used to estimate the cellobiase activity, and the probe exhibited highly sensitive and selective detection of the cellobiase activity with a wide linear from 3.0 to 100.0U L(-1) within 20 min. Meanwhile, a good linear relationship with correlation coefficient of R2=0.9976 was obtained. This approach successfully showed the suitability of gold nanocomposites as a colorimetric sensor for the sensitive and specific enzyme activity detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2014.04.091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!