Design and synthesis of lipid-coupled inositol 1,2,3,4,5,6-hexakisphosphate derivatives exhibiting high-affinity binding for the HIV-1 MA domain.

Org Biomol Chem

Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.

Published: July 2014

The precursor of Gag protein (Pr55(Gag)) of human immunodeficiency virus, the principal structural component required for virus assembly, is known to bind d-myo-phosphatidylinositol 4,5-bisphosphate (PIP2). The N-terminus of Pr55(Gag), the MA domain, plays a critical role in the binding of Pr55(Gag) to the plasma membrane. Herein, we designed and synthesized myo-phosphatidylinositol 2,3,4,5,6-pentakisphosphate (PIP5) derivatives comprising highly phosphorylated inositol and variously modified diacylglycerol to examine the MA-binding properties. The inositol moiety was synthesized starting with myo-inositol and assembled with a hydrophobic glycerol moiety through a phosphate linkage. The Kd value for MA-binding of the PIP5 derivative 2 (Kd = 0.25 μM) was the lowest (i.e., highest affinity) of all derivatives, i.e., 70-fold lower than the Kd for the PIP2 derivative 1 (Kd = 16.9 μM) and 100-fold lower than the Kd for IP6 (Kd = 25.7 μM), suggesting the possibility that the PIP5 derivative blocks Pr55(Gag) membrane binding by competing with PIP2 in MA-binding.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4ob00350kDOI Listing

Publication Analysis

Top Keywords

pip5 derivative
8
design synthesis
4
synthesis lipid-coupled
4
lipid-coupled inositol
4
inositol 123456-hexakisphosphate
4
123456-hexakisphosphate derivatives
4
derivatives exhibiting
4
exhibiting high-affinity
4
high-affinity binding
4
binding hiv-1
4

Similar Publications

Current radiolabeled gastrin-releasing peptide receptor (GRPR) ligands usually suffer from high accumulation in GRPR-positive organs (pancreas, stomach), limiting tumor-to-background contrast in the abdomen. In novel N4-bombesin derivatives this was addressed by substitutions at the Gln7-Trp8 site within the MJ9 peptide (H-Pip5-phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) either by homoserine (Hse7), β-(3-benzothienyl) alanine (Bta8) or α-methyl tryptophan (α-Me-Trp8), with the aim of optimizing pharmacokinetics. We prepared and characterized the peptide conjugates 6-carboxy-1,4,8,11-tetraazaundecane (N4)-asp-MJ9, N4-asp-[Bta8]MJ9, N4-[Hse7]MJ9 and N4-[α-Me-Trp8]MJ9, and evaluated these compounds in vitro (GRPR affinity via IC50,inverse; internalization; lipophilicity via logD7.

View Article and Find Full Text PDF

Design and synthesis of lipid-coupled inositol 1,2,3,4,5,6-hexakisphosphate derivatives exhibiting high-affinity binding for the HIV-1 MA domain.

Org Biomol Chem

July 2014

Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.

The precursor of Gag protein (Pr55(Gag)) of human immunodeficiency virus, the principal structural component required for virus assembly, is known to bind d-myo-phosphatidylinositol 4,5-bisphosphate (PIP2). The N-terminus of Pr55(Gag), the MA domain, plays a critical role in the binding of Pr55(Gag) to the plasma membrane. Herein, we designed and synthesized myo-phosphatidylinositol 2,3,4,5,6-pentakisphosphate (PIP5) derivatives comprising highly phosphorylated inositol and variously modified diacylglycerol to examine the MA-binding properties.

View Article and Find Full Text PDF

Induced splice modulation of pre-mRNAs shows promise to correct aberrant disease transcripts and restore functional protein and thus has therapeutic potential. Duchenne muscular dystrophy (DMD) results from mutations that disrupt the DMD gene open reading frame causing an absence of dystrophin protein. Antisense oligonucleotide (AO)-mediated exon skipping has been shown to restore functional dystrophin in mdx mice and DMD patients treated intramuscularly in two recent phase 1 clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!