Nowadays, alcohol ethoxylates (AEOs) constitute the most important group of non-ionic surfactants, used in a wide range of applications such as household cleaners and detergents. Significant amounts of these compounds and their degradation products (polyethylene glycols, PEGs, which are also used for many other applications) reach aquatic environments, and are eliminated from the water column by degradation and sorption processes. This work deals with the environmental distribution of AEOs and PEGs in the Long Island Sound Estuary, a setting impacted by sewage discharges from New York City (NYC). The distribution of target compounds in seawater was influenced by tides, consistent with salinity differences, and concentrations in suspended solid samples ranged from 1.5 to 20.5 μg/g. The more hydrophobic AEOs were mostly attached to the particulate matter whereas the more polar PEGs were predominant in the dissolved form. Later, the sorption of these chemicals was characterized in the laboratory. Experimental and environmental sorption coefficients for AEOs and PEGs showed average values from 3607 to 164,994 L/kg and from 74 to 32,862 L/kg, respectively. The sorption data were fitted to a Freundlich isotherm model with parameters n and log KF between 0.8-1.2 and 1.46-4.39 L/kg, respectively. AEO and PEG sorptions on marine sediment were also found to be mostly not affected by changes in salinity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2014.05.061 | DOI Listing |
Toxics
January 2025
Department of Chemical Engineering, Faculty of Sciences, University of Granada, Campus Fuente Nueva s/n, 18071 Granada, Spain.
Surfactants play a crucial role in various industrial applications, including detergents and personal care products. However, their widespread use raises concerns due to their potential environmental impact and health risks, particularly in aquatic ecosystems, where they can disrupt the balance of marine life and accumulate in water sources, posing challenges to sustainable development. This study investigates the environmental and health implications of anionic and nonionic surfactants, focusing on their toxicity, biodegradation, and skin irritation potential profiles, especially when combined with silica nanoparticles.
View Article and Find Full Text PDFGels
December 2024
School of Pharmacy, Inner Mongolia Medical University, Hohhot 010100, China.
Patchouli oil (PO) is a natural substance famous for its immune-enhancing and anti-inflammatory effects. Atopic dermatitis (AD) is characterized by epidermal gene mutations, skin barrier dysfunction, and immune dysregulation, making patchouli volatile oil a potential candidate for AD treatment. Initially, PO was mixed with ethyl oleate (EO), castor oil ethoxylated ether-40 (EL-40), anhydrous ethanol, and water to form a patchouli oil microemulsion (PO-ME) system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China.
Fast-charging lithium-ion batteries (LIBs) are the key to solving the range anxiety of electric vehicles. However, the lack of separators with high Li transportation rates has become a major bottleneck, restricting their development. In this work, the electrochemical performance of traditional polyethylene separators was enhanced by coating AlO nanoparticles with a novel green binder.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
Polyvinyl chloride (PVC) belongs to the most widely used group of thermoplastics. Most of the market for PVC products belongs to plasticized compositions. Plasticizers are the most demanded additives in the polymer industry.
View Article and Find Full Text PDFMolecules
December 2024
Laboratoire de Chimie Agro-Industrielle (LCA), INRAE, Toulouse INP, Université de Toulouse, 31030 Toulouse, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!