Introduction: A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects.
Methods: HG was induced in rats using streptozotocin (60 mg/kg intravenously) and the following groups assessed at two weeks: controls, HG, HG + PEG-SOD (2,000U/kg/d intraperitoneally for seven days), and HG + denatured (dn)PEG-SOD (2000U/kg/d intraperitoneally for seven days). PEG-SOD and dnPEG-SOD were administered on day 8, we measured diaphragm specific force generation in muscle strips, force-pCa relationships in single permeabilized fibers, contractile protein content and indices of oxidative stress.
Results: HG reduced diaphragm specific force generation, altered single fiber force-pCa relationships, depleted troponin T, and increased oxidative stress. PEG-SOD prevented HG-induced reductions in diaphragm specific force generation (for example 80 Hz force was 26.4 ± 0.9, 15.4 ± 0.9, 24.0 ± 1.5 and 14.9 ± 0.9 N/cm2 for control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P <0.001). PEG-SOD also restored HG-induced reductions in diaphragm single fiber force generation (for example, Fmax was 182.9 ± 1.8, 85.7 ± 2.0, 148.6 ± 2.4 and 90.9 ± 1.5 kPa in control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P <0.001). HG-induced troponin T depletion, protein nitrotyrosine formation, and carbonyl modifications were largely prevented by PEG-SOD.
Conclusions: HG-induced reductions in diaphragm force generation occur largely at the level of the contractile proteins, are associated with depletion of troponin T and increased indices of oxidative stress, findings not previously reported. Importantly, administration of PEG-SOD largely ablated these derangements, indicating that superoxide generation plays a major role in hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056378 | PMC |
http://dx.doi.org/10.1186/cc13855 | DOI Listing |
Curr Cardiol Rev
January 2025
Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.
Background: Dyspnea and exertional intolerance are the most common clinical manifestations of Heart Failure (HF). One of the possible mechanisms of both symptoms in HF patients is weakness of the inspiratory muscles.
Aim: Because the diaphragm is the main inspiratory muscle, this review aimed to investigate the contribution of diaphragmatic function to the genesis of dyspnea or exercise intolerance in HF patients.
Trials
January 2025
Neuromusculoskeletal Rehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
Background: Urinary incontinence (UI) is a common and debilitating condition among people with multiple sclerosis (MS) and is more prevalent among women. Over the past decade, numerous studies have investigated the effects of pelvic floor muscle training (PFMT) as a treatment for UI in people with MS. MS negatively impacts pulmonary function even in the early stages of the disease and people with MS may experience respiratory muscle weakness.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Physical Therapy, University of Florida Health Cancer Center, Gainesville, Florida, USA.
Background: Cancer cachexia represents a debilitating muscle wasting condition that is highly prevalent in gastrointestinal cancers, including pancreatic ductal adenocarcinoma (PDAC). Cachexia is estimated to contribute to ~30% of cancer-related deaths, with deterioration of respiratory muscles suspected to be a key contributor to cachexia-associated morbidity and mortality. In recent studies, we identified fibrotic remodelling of respiratory accessory muscles as a key feature of human PDAC cachexia.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Continuity of Care and Multicomplexity, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
: Point-of-care lung ultrasonography (LUS) represents an accurate diagnostic tool in older patients with respiratory failure. The integration of LUS with ultrasonographic assessment of diaphragm thickness and excursion, right vastus lateralis (RVL) muscle thickness and cross-sectional area (CSA) could provide real-time information on frailty and sarcopenia. The primary aim of this proof-of-concept prospective study was to evaluate clinical correlates of thoracic, diaphragmatic, and muscular ultrasound to characterize the associations between frailty, respiratory failure, and sarcopenia in older patients hospitalized for acute respiratory complaints.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Respiratory muscle weakness in heart failure (HF) can deteriorate its symptoms such as fatigue, dyspnea, and impaired functional status. Pulmonary rehabilitation can strengthen these muscles. This study aimed to determine the impact of breathing exercises on fatigue severity, dyspnea, and functional classification in HF patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!