Identification of marine neuroactive molecules in behaviour-based screens in the larval zebrafish.

Mar Drugs

Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.

Published: May 2014

High-throughput behavior-based screen in zebrafish is a powerful approach for the discovery of novel neuroactive small molecules for treatment of nervous system diseases such as epilepsy. To identify neuroactive small molecules, we first screened 36 compounds (1-36) derived from marine natural products xyloketals and marine isoprenyl phenyl ether obtained from the mangrove fungus. Compound 1 demonstrated the most potent inhibition on the locomotor activity in larval zebrafish. Compounds 37-42 were further synthesized and their potential anti-epilepsy action was then examined in a PTZ-induced epilepsy model in zebrafish. Compound 1 and compounds 39, 40 and 41 could significantly attenuate PTZ-induced locomotor hyperactivity and elevation of c-fos mRNA in larval zebrafish. Compound 40 showed the most potent inhibitory action against PTZ-induced hyperactivity. The structure-activity analysis showed that the OH group at 12-position played a critical role and the substituents at the 13-position were well tolerated in the inhibitory activity of xyloketal derivatives. Thus, these derivatives may provide some novel drug candidates for the treatment of epilepsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071578PMC
http://dx.doi.org/10.3390/md12063307DOI Listing

Publication Analysis

Top Keywords

larval zebrafish
12
neuroactive small
8
small molecules
8
zebrafish compound
8
zebrafish
5
identification marine
4
marine neuroactive
4
neuroactive molecules
4
molecules behaviour-based
4
behaviour-based screens
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!