QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs.

Hum Genomics

Department of Computer Science, Ramapo College of New Jersey, 505 Ramapo Valley Road, Mahwah, NJ 08807, USA.

Published: May 2014

Background: Nucleic acids containing guanine tracts can form quadruplex structures via non-Watson-Crick base pairing. Formation of G-quadruplexes is associated with the regulation of important biological functions such as transcription, genetic instability, DNA repair, DNA replication, epigenetic mechanisms, regulation of translation, and alternative splicing. G-quadruplexes play important roles in human diseases and are being considered as targets for a variety of therapies. Identification of functional G-quadruplexes and the study of their overall distribution in genomes and transcriptomes is an important pursuit. Traditional computational methods map sequence motifs capable of forming G-quadruplexes but have difficulty in distinguishing motifs that occur by chance from ones which fold into G-quadruplexes.

Results: We present Quadruplex forming 'G'-rich sequences (QGRS)-Conserve, a computational method for calculating motif conservation across exomes and supports filtering to provide researchers with more precise methods of studying G-quadruplex distribution patterns. Our method quantitatively evaluates conservation between quadruplexes found in homologous nucleotide sequences based on several motif structural characteristics. QGRS-Conserve also efficiently manages overlapping G-quadruplex sequences such that the resulting datasets can be analyzed effectively.

Conclusions: We have applied QGRS-Conserve to identify a large number of G-quadruplex motifs in the human exome conserved across several mammalian and non-mammalian species. We have successfully identified multiple homologs of many previously published G-quadruplexes that play post-transcriptional regulatory roles in human genes. Preliminary large-scale analysis identified many homologous G-quadruplexes in the 5'- and 3'-untranslated regions of mammalian species. An expectedly smaller set of G-quadruplex motifs was found to be conserved across larger phylogenetic distances. QGRS-Conserve provides means to build datasets that can be filtered and categorized in a variety of biological dimensions for more targeted studies in order to better understand the roles that G-quadruplexes play.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017754PMC
http://dx.doi.org/10.1186/1479-7364-8-8DOI Listing

Publication Analysis

Top Keywords

g-quadruplex motifs
12
g-quadruplexes play
12
qgrs-conserve computational
8
computational method
8
roles human
8
g-quadruplexes
7
qgrs-conserve
5
g-quadruplex
5
motifs
5
method discovering
4

Similar Publications

Non-canonical (non-B) DNA structures-e.g., bent DNA, hairpins, G-quadruplexes, Z-DNA, etc.

View Article and Find Full Text PDF

The dynamics of three-dimensional (3D) genome organization are essential to transcriptional regulation. While enhancers regulate spatiotemporal gene expression, chromatin looping is a means for enhancer-promoter interactions yielding cell-type-specific gene expression. Further, non-canonical DNA secondary structures, such as G-quadruplexes (G4s), are related to increased gene expression.

View Article and Find Full Text PDF

Left-handed G-quadruplexes (LHG4s) belong to a class of recently discovered noncanonical DNA structures under the larger umbrella of G-quadruplex DNAs (G4s). The biological relevance of these structures and their ability to be targeted with classical G4 ligands is underexplored. Here, we explore whether the putative LHG4 DNA sequence from the SLC2A1 oncogene promoter maintains its left-handed characteristics upon addition of nucleotides in the 5'- and 3'-direction from its genomic context.

View Article and Find Full Text PDF

Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines.

Chembiochem

December 2024

Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.

The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.

View Article and Find Full Text PDF

Quadruplex DNA Hybrid Catalysts for Enantioselective Reactions.

Chembiochem

December 2024

Key Laboratory of Applied Surface and Colloid Chemistry (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China.

Beyond the pivotal genetic roles of DNA, its duplex structures as chiral scaffolds interacting with metal complexes give rise to DNA hybrid catalysts for a set of aqueous-phase enantioselective reactions. Besides DNA duplex, DNA quadruplexes including G-quadruplex and i-motif show tunable structures with variable non-canonical base pairs. In this concept, based on the interaction between metal species and DNA, we classify the construction strategies of quadruplex DNA hybrid catalysts into supramolecular, covalent and coordinative modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!