Background: When breastfeeding is difficult or impossible during the neonatal period, an analysis of muscle activity can help determine the best method for substituting it to promote the child's development. The aim of this study was to analyze the electrical activity of the masseter muscle using surface electromyography during suction in term newborns by comparing breastfeeding, bottle and cup feeding.
Methods: An observational, cross-sectional analytical study was carried out on healthy, clinically stable term infants, assigned to receive either breast, or bottle or cup feeding. Setting was a Baby Friendly accredited hospital. Muscle activity was analyzed when each infant showed interest in sucking using surface electromyography. Root mean square averages (RMS) recorded in microvolts were transformed into percentages (normalization) of the reference value. The three groups were compared by ANOVA; the "stepwise" method of the multiple linear regression analysis tested the model which best defined the activity of the masseter muscle in the sample at a significance level of 5%.
Results: Participants were 81 full term newborns (27 per group), from 2 to 28 days of life. RMS values were lower for bottle (mean 44.2%, SD 14.1) than breast feeding (mean 58.3%, SD 12.7) (P = 0.003, ANOVA); cup feeding (52.5%, SD 18.2%) was not significantly different (P > 0.05). For every gram of weight increase, RMS increased by 0.010 units.
Conclusions: Masseter activity was significantly higher in breastfed newborns than in bottle-fed newborns, who presented the lowest RMS values. Levels of masseter activity during cup-feeding were between those of breast and bottle feeding, and did not significantly differ from either group. This study in healthy full term neonates endorses cup rather than bottle feeding as a temporary substitute for breastfeeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014087 | PMC |
http://dx.doi.org/10.1186/1471-2393-14-154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!