AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes.

BMC Genet

Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Santariškių str, 2, LT-08661 Vilnius, Lithuania.

Published: May 2014

Background: The C34T genetic polymorphism (rs17602729) in the AMPD1 gene, encoding the skeletal muscle-specific isoform of adenosine monophosphate deaminase (AMPD1), is a common polymorphism among Caucasians that can impair exercise capacity. The aim of the present study was twofold: (1) to determine the C34T AMPD1 allele/genotype frequency distributions in Lithuanian athletes (n = 204, stratified into three groups: endurance, sprint/power and mixed) and compare them with the allele/genotype frequency distributions in randomly selected healthy Lithuanian non-athletes (n = 260) and (2) to compare common anthropometric measurements and physical performance phenotypes between the three groups of athletes depending on their AMPD1 genotype.

Results: The results of our study indicate that the frequency of the AMPD1 TT genotype was 2.4% in the control group, while it was absent in the athlete group. There were significantly more sprint/power-orientated athletes with the CC genotype (86.3%) compared with the endurance-orientated athletes (72.9%), mixed athletes (67.1%), and controls (74.2%). We determined that the AMPD1 C34T polymorphism is not associated with aerobic muscle performance phenotype (VO2max). For CC genotype the short-term explosive muscle power value (based on Vertical Jump test) of athletes from the sprint/power group was significantly higher than that of the endurance group athletes (P < 0.05). The AMPD1 CC genotype is associated with anaerobic performance (Vertical Jump).

Conclusions: The AMPD1 C allele may help athletes to attain elite status in sprint/power-oriented sports, and the T allele is a factor unfavourable for athletics in sprint/power-oriented sports categories. Hence, the AMPD1 C allele can be regarded as a marker associated with the physical performance of sprint and power. Replications studies are required to confirm this association.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032451PMC
http://dx.doi.org/10.1186/1471-2156-15-58DOI Listing

Publication Analysis

Top Keywords

physical performance
8
athletes
8
lithuanian athletes
8
allele/genotype frequency
8
frequency distributions
8
three groups
8
ampd1
7
ampd1 rs17602729
4
rs17602729 associated
4
associated physical
4

Similar Publications

Establishing normative values and understanding how proprioception varies among body parts is crucial. However, the variability across individuals, especially adolescents, makes it difficult to establish norms. This prevents further investigation into classifying patients with abnormal proprioception.

View Article and Find Full Text PDF

Laser scribed proton exchange membranes for enhanced fuel cell performance and stability.

Nat Commun

December 2024

Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.

View Article and Find Full Text PDF

The mechanisms underlying the impact of probiotic supplementation on health remain largely elusive. While previous studies primarily focus on the discovery of novel bioactive bacteria and alterations in the microbiome environment to explain potential probiotic effects, our research delves into the role of living Lactiplantibacillus (formerly known as Lactobacillus) and their conditioned media, highlighting that only the former, not dead bacteria, enhance the healthspan of Caenorhabditis elegans (C. elegans).

View Article and Find Full Text PDF

Tailoring Robust 2D Nanochannels by Radical Polymerization for Efficient Molecular Sieving.

Adv Sci (Weinh)

December 2024

Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia.

Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy.

View Article and Find Full Text PDF

Professionals' Perspectives of Smart Stationary Bikes in Rehabilitation: Qualitative Study.

JMIR Rehabil Assist Technol

December 2024

Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR) - Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM) du Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Île-de-Montréal (CCSMTL), Université de Montréal, Institut de Réadaptation Gingras Lindsay de Montréal, 6300 avenue de Darlington, Montréal, QC, H3S 2J4, Canada, 1 514-343-6111.

Background: Stationary bikes are used in numerous rehabilitation settings, with most offering limited functionalities and types of training. Smart technologies, such as artificial intelligence and robotics, bring new possibilities to achieve rehabilitation goals. However, it is important that these technologies meet the needs of users in order to improve their adoption in current practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!