Background: SPI-18 is a pathogenicity island found in some Salmonella enterica serovars, including S. Typhi. SPI-18 harbors two ORFs organized into an operon, hlyE and taiA genes, both implicated in virulence. Regarding the hlyE regulation in S. Typhi, it has been reported that RpoS participates as transcriptional up-regulator under low pH and high osmolarity. In addition, CRP down-regulates hlyE expression during exponential growth. Previously, it has been suggested that there is another factor related to catabolite repression, different from CRP, involved in the down-regulation of hlyE. Moreover, PhoP-dependent hlyE up-regulation has been reported in bacteria cultured simultaneously under low pH and low concentration of Mg2+. Nevertheless, the relative contribution of each environmental signal is not completely clear. In this work we aimed to better understand the regulation of hlyE in S. Typhi and the integration of different environmental signals through global regulators.

Results: We found that Fis participates as a CRP-independent glucose-dependent down-regulator of hlyE. Also, Fis and CRP seem to exert the repression over hlyE through down-regulating rpoS. Moreover, PhoP up-regulates hlyE expression via rpoS under low pH and low Mg2+ conditions.

Conclusions: All these results together show that, at least under the tested conditions, RpoS is the central regulator in the hlyE regulatory network, integrating multiple environmental signals and global regulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105832PMC
http://dx.doi.org/10.1186/1471-2180-14-139DOI Listing

Publication Analysis

Top Keywords

hlye expression
12
hlye
11
low low
8
environmental signals
8
signals global
8
rpos
5
low
5
rpos integrates
4
crp
4
integrates crp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!