Background: Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat.

Results: We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer.

Conclusions: SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029936PMC
http://dx.doi.org/10.1186/1471-2156-15-54DOI Listing

Publication Analysis

Top Keywords

bread wheat
20
population structure
20
ascertainment bias
16
wheat
15
wheat landraces
8
elite bread
8
single nucleotide
8
nucleotide polymorphism
8
snp panels
8
genetic diversity
8

Similar Publications

The Physicochemical and Rheological Properties of Green Banana Flour-Wheat Flour Bread Substitutions.

Plants (Basel)

January 2025

Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.

Functional foods are currently receiving increasing popularity in diet modification. Green bananas contain far more dietary fiber (DF) and resistant starch (RS) than mature bananas. The potential for integrating these vital components into food, such as bread, has expanded.

View Article and Find Full Text PDF

Wasted bread (WB) has been studied as an alternative ingredient for increasing the sustainable footprint in the beer production chain. There are gaps in the literature on the impact of WB on beer manufacturing. Thus, the objective was to evaluate the addition of WB as a replacement for wheat flakes in a craft beer.

View Article and Find Full Text PDF

Characterization and In Vitro Digestion Kinetics of Purified Pulse Starches: Implications on Bread Formulation.

Foods

January 2025

Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.

This study investigated the contribution of pulse starches (PSs) to the slowly digestible starch (SDS) properties observed in pulses. Purified pulse starches from 17 commonly consumed pulses were examined, focusing on their digestion kinetics using a pancreatic alpha-amylase (PAA) and rat intestinal acetone powder (RIAP) mixture. Chickpea starch, exhibiting a slow digestibility profile, was incorporated as an ingredient to confer slow digestibility to refined wheat flour bread.

View Article and Find Full Text PDF

This paper aimed to study the nutritional, phytochemical and rheological properties of some composite flours based on wheat flour (WF) mixed with non-germinated (LF) and sprouted lentil flour (SLF), in order to fortify the wheat flour and to obtain functional bakery/pastry products. The composite flours based on wheat flour and bean lentil flour (BLWF) and sprouted lentil flour (SLWF) were analyzed from the point of view of proximate composition (proteins, lipids, total carbohydrates, and minerals), content of individual and total polyphenols (TPC), as well as the contents of macro and microelements. For use in baking/pastries, the composite flours were tested from the point of view of rheological behavior using the MIXOLAB system, and the profiles obtained were compared with those of bread and biscuit.

View Article and Find Full Text PDF

Characteristics of Soft Wheat and Tiger Nut () Composite Flour Bread.

Foods

January 2025

Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland.

This study investigated the effects of tiger nut flour (TNF) incorporation (5-25%) on wheat-based bread characteristics. Dough rheology analysis revealed optimal gas retention at 10% TNF addition, while higher concentrations decreased dough stability. Physical analysis demonstrated that 10% TNF substitution yielded the highest specific volume (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!