Background: Human papillomavirus type 16 (HPV16) infection is implicated in cervical carcinogenesis. This study aimed to characterize two new monoclonal antibodies (mAbs) against HPV L1 protein.
Methods: The immunocompetence of AE3 and AG7 mAbs for HPV L1 protein was evaluated by Western blot analysis, immunostaining, hemagglutination inhibition assay, and ELISA. The heavy chain variable region (VH) and light chain variable region (VL) of AE3 and AG7 mAbs were sequenced and analyzed.
Results: Both mAbs specifically recognized HPV16 L1 and virus-like particles (VLPs). Both the affinity and the titer of AE3 mAb were higher than that of AG7. There were differences in sequences in the complementary determining regions (CDR) 2 and 3 of VL, as well as in the CDR1 and CDR3 of VH. The two mAbs have distinct predicted three-dimensional structures.
Conclusions: We characterized two mAbs neutralizing antibodies for HPV L1 protein, which would help develop genetic-engineered neutralizing antibodies against HPV16 for diagnostic and therapeutic purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4099146 | PMC |
http://dx.doi.org/10.1186/1746-1596-9-101 | DOI Listing |
Microb Cell Fact
January 2025
Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.
View Article and Find Full Text PDFTrends Parasitol
January 2025
Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.
In Plasmodium falciparum malaria, infected cells accumulate in blood vessels of organs, including the brain. Recently, Reyes et al. identified monoclonal antibodies that stop infected cells from binding to the endothelial protein C receptor (EPCR) in a model of brain blood vessels.
View Article and Find Full Text PDFInt J Pharm
January 2025
BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China. Electronic address:
In the realm of therapeutic antibodies, co-formulations comprising two or more monoclonal antibodies (mAbs) have emerged as a promising strategy, offering enhanced treatment efficacy, improved efficiency, and prolonged intellectual property protection. These advantages have sparked significant interest among both patients and pharmaceutical companies. However, the quantification and analysis of individual mAbs within such co-formulations pose a substantial challenge due to their similar physicochemical properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Královopolská 135, 61200 Brno, Czech Republic. Electronic address:
Galectin-1 (Gal-1) displays unique sensitivity to oxidative inactivation which appears critical in regulating its spatial and temporal activity. The two physicochemical states, i.e.
View Article and Find Full Text PDFProtein Expr Purif
January 2025
Institute of Tropical Medicine, Joint Vietnam-Russia Tropical Science and Technology Research Center.
Botulinum neurotoxin, produced by the bacterium Clostridium botulinum, causes botulism, a severe, rapidly progressing, and potentially fatal condition. Swift detection of the toxin and timely administration of antitoxin antibodies are critical for effective treatment. The current standard for Botulinum toxin testing is the mouse lethality assay, but this method is time-consuming and requires live animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!