Background: Transgenesis by random integration of a transgene into the genome of a zygote has become a reliable and powerful method for the creation of new mouse strains that express exogenous genes, including human disease genes, tissue specific reporter genes or genes that allow for tissue specific recombination. Nearly 6,500 transgenic alleles have been created by random integration in embryos over the last 30 years, but for the vast majority of these strains, the transgene insertion sites remain uncharacterized.
Results: To obtain a complete understanding of how insertion sites might contribute to phenotypic outcomes, to more cost effectively manage transgenic strains, and to fully understand mechanisms of instability in transgene expression, we've developed methodology and a scoring scheme for transgene insertion site discovery using high throughput sequencing data.
Conclusions: Similar to other molecular approaches to transgene insertion site discovery, high-throughput sequencing of standard paired-end libraries is hindered by low signal to noise ratios. This problem is exacerbated when the transgene consists of sequences that are also present in the host genome. We've found that high throughput sequencing data from mate-pair libraries are more informative when compared to data from standard paired end libraries. We also show examples of the genomic regions that harbor transgenes, which have in common a preponderance of repetitive sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035081 | PMC |
http://dx.doi.org/10.1186/1471-2164-15-367 | DOI Listing |
Development
January 2025
Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107, France.
Optimized laboratory conditions for research models are crucial for the success of scientific projects. This includes controlling the entire life cycle, having access to all developmental stages and maintaining stable physiological conditions. Reducing the life cycle of a research model can also enhance the access to biological material and speed up genetic tool development.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
ProBioGen AG, 13086 Berlin, Germany.
: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified vaccinia Ankara (MVA) and isolate CR19, which has significantly expanded inverted terminal repeats (ITRs).
View Article and Find Full Text PDFPharmaceutics
November 2024
Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China.
Interleukin-1 (IL-1) is a pivotal mediator in the pathological progression of osteoarthritis (OA), playing a central role in disease progression. However, the rapid clearance of IL-1 receptor antagonist (IL-1Ra) from the joints may hinder the efficacy of intra-articular IL-1Ra injections in reducing OA-associated pain or cartilage degradation. Sustaining sufficient levels of IL-1Ra within the joints via adeno-associated virus (AAV)-mediated gene therapy presents a promising therapeutic strategy for OA.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
Understanding the integration of transgene DNA (T-DNA) in transgenic crops, animals, and clinical applications is paramount for ensuring the stability and expression of inserted genes, which directly influence desired traits and therapeutic outcomes. Analyzing T-DNA integration patterns is essential for identifying potential unintended effects and evaluating the safety and environmental implications of genetically modified organisms (GMOs). This knowledge is crucial for regulatory compliance and fostering public trust in biotechnology by demonstrating transparency in genetic modifications.
View Article and Find Full Text PDFPlanta
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!