Although the sequencing of protonated proteins and peptides with tandem mass spectrometry has blossomed into a powerful means of characterizing the proteome, much less effort has been directed at their deprotonated analogues, which can offer complementary sequence information. We present a unified approach to characterize the structure and intermolecular interactions present in the gas-phase pentapeptide leucine-enkephalin anion by several vibrational spectroscopy schemes as well as by ion-mobility spectrometry, all of which are analyzed with the help of quantum-chemical computations. The picture emerging from this study is that deprotonation takes place at the C terminus. In this configuration, the excess charge is stabilized by strong intramolecular hydrogen bonds to two backbone amide groups and thus provides a detailed picture of a potentially common charge accommodation motif in peptide anions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp501772dDOI Listing

Publication Analysis

Top Keywords

ion mobility
4
mobility spectrometry
4
spectrometry infrared
4
infrared dissociation
4
dissociation spectroscopy
4
spectroscopy initio
4
initio computations
4
computations structural
4
structural characterization
4
characterization deprotonated
4

Similar Publications

As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types.

View Article and Find Full Text PDF

Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.

View Article and Find Full Text PDF

Isotopic Transient Kinetic Analysis of Soot Oxidation on MnO, MnO-CeO, and CeO Catalysts in Tight Contact Conditions.

Molecules

January 2025

Department of Chemical Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.

The reaction mechanism of soot oxidation on Mn (MnO), Mn-Ce (MnO-CeO), and Ce (CeO) catalysts in tight contact conditions was investigated using ITKA (isotopic transient kinetic analysis). The obtained results suggest that lattice-bulk oxygen from all studied catalysts takes part in the soot oxidation process but with varying relative contributions: for the Ce catalyst, this contribution is practically 100%, whereas with decreasing Ce content in Mn-Ce catalysts, the significance of lattice-bulk oxygen for soot oxidation diminishes. For the Mn catalyst, it is estimated to be below 50%.

View Article and Find Full Text PDF

One of the main objectives of the ion mobility spectrometry (IMS) technique is to reduce moisture in detection systems, which causes the formation of ion clusters and ion water and a reduction in formed clusters' activity. Thus, one of the methods limiting moisture in a sampling injection system is to use hydrophobic polymeric membranes. The use of membranes with high permeability relative to the analysed organic compounds is required, including toxic agents in air (TAAs).

View Article and Find Full Text PDF

An experimental investigation is conducted to identify the optimal blend of fluoroethylene carbonate (FEC), 3,3,3-trifluoropropylene carbonate (TFEC), and various fluorinated ethers, including 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (HFE), 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), and bis(2,2,2-trifluoroethyl) ether (BTE), to enhance the performances of lithium-ion cells at high voltage. The cell incorporating TTE exhibits a significantly superior capacity for retention after long-term cycling at 4.5 V, which might be attributed to the improved kinetics of lithium ions and the generation of a thin, reliable, and inorganic-rich electrode-electrolyte interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!