We report a straightforward method to produce high-quality nitrogen-doped graphene on SiC(0001) using direct nitrogen ion implantation and subsequent stabilization at temperatures above 1300 K. We demonstrate that double defects, which comprise two nitrogen defects in a second-nearest-neighbor (meta) configuration, can be formed in a controlled way by adjusting the duration of bombardment. Two types of atomic contrast of single N defects are identified in scanning tunneling microscopy. We attribute the origin of these two contrasts to different tip structures by means of STM simulations. The characteristic dip observed over N defects is explained in terms of the destructive quantum interference.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn502438k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!