We present an extensive study of Pt₁₃ clusters embedded in a Na-Y zeolite, by comparing calculations for isolated clusters to experimental data. We perform structural refinements for various geometries involving the isolated clusters and calculate the corresponding x-ray absorption and magnetic circular dichroism spectra, from the joint perspective of pseudopotential plane wave calculations and real space multiple scattering theory. Taking into account the spin-orbit coupling significantly improves the previous scalar relativistic predictions of magnetic properties. The ensemble of embedded Pt₁₃ is found to be dominated by a non-magnetic cuboctahedral geometry. One of the implications is that the ground state of Pt₁₃ clusters in the zeolite environment is different from that of isolated particles. We investigate several isomers that yield a magnetic signature. Furthermore, their abundance was estimated by direct comparison with experiment. We found that one third of the magnetic moment of Pt₁₃ comes from the orbital contribution, in agreement with the experimental value. We therefore provide theoretical proof of the extraordinary orbital magnetization in Pt13 clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/26/19/196006 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P.R. China.
Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.
View Article and Find Full Text PDFBackground: The aim of the present study was to investigate the willingness of elderly individuals regarding their choice of elderly care modes in underdeveloped regions of Western China and to identify the key factors influencing the willingness.
Methods: We distributed a total of 20 000 questionnaires using the multistage stratified cluster random sampling method, and successfully collected 19 460 of them. After conducting quality checks, we deemed 19 040 questionnaires valid for analysis.
Avian Pathol
January 2025
Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil, Rio Grande do Sul, Brazil.
serovar Gallinarum biovar Gallinarum is a pathogenic bacterium that causes fowl typhoid (FT), affecting chicken flocks worldwide. This study aimed to evaluate the emergence, dissemination and genomic profile of Gallinarum lineages from Brazil. Twelve whole-genomes sequences (WGS) of different .
View Article and Find Full Text PDFCommun Phys
January 2025
Department of Physics and Astronomy, the University of Manchester, Manchester, UK.
Two-dimensional materials with flat electronic bands are promising for realising exotic quantum phenomena such as unconventional superconductivity and nontrivial topology. However, exploring their vast chemical space is a significant challenge. Here we introduce elf, an unsupervised convolutional autoencoder that encodes electronic band structure images into fingerprint vectors, enabling the autonomous clustering of materials by electronic properties beyond traditional chemical paradigms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!