To investigate white matter (WM) abnormalities in neocortical epilepsy, we extract supratentorial WM parameters from raw tensor magnetic resonance images (MRI) with automated region-of-interest (ROI) registrations. Sixteen patients having neocortical seizures with secondarily generalised convulsions and 16 age-matched normal subjects were imaged with high-resolution and diffusion tensor MRIs. Automated demarcation of supratentorial fibers was accomplished with personalized fiber-labeled atlases. From the individual atlases, we observed significant elevation of mean diffusivity (MD) in fornix (cres)/stria terminalis (FX/ST) and sagittal stratum (SS) and a significant difference in fractional anisotropy (FA) among FX/ST, SS, posterior limb of the internal capsule (PLIC), and posterior thalamic radiation (PTR). For patients with early-onset epilepsy, the diffusivities of the SS and the retrolenticular part of the internal capsule were significantly elevated, and the anisotropies of the FX/ST and SS were significantly decreased. In the drug-resistant subgroup, the MDs of SS and PTR and the FAs of SS and PLIC were significantly different. Onset age was positively correlated with increases in FAs of the genu of the corpus callosum. Patients with neocortical seizures and secondary generalisation had microstructural anomalies in WM. The changes in WM are relevant to early onset, progression, and severity of epilepsy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026917 | PMC |
http://dx.doi.org/10.1155/2014/419376 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
Plasma biomarkers have great potential in the screening, diagnosis, and monitoring of Alzheimer's disease (AD). However, findings on their associations with cerebral perfusion and structural changes are inconclusive. We examined both cross-sectional and longitudinal associations between plasma biomarkers and cerebral blood flow (CBF), gray matter (GM) volume, and white matter (WM) integrity.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal storage disorder leading to deleterious brain effects. While animal models suggested that MPS I severely affects white matter (WM), whole-brain diffusion tensor imaging (DTI) analysis was not performed due to MPS-related morphological abnormalities. 3T DTI data from 28 severe (MPS IH, treated with hematopoietic stem cell transplantation-HSCT), 16 attenuated MPS I patients (MPS IA) enrolled under the study protocol NCT01870375, and 27 healthy controls (HC) were analyzed using the free-water correction (FWC) method to resolve macrostructural partial volume effects and unravel differences in DTI metrics accounting for microstructural abnormalities.
View Article and Find Full Text PDFPurpose: Defining a microscopic tumor infiltration boundary is critical to the success of radiation therapy. Currently, radiation oncologists use margins to geometrically expand the visible tumor for radiation treatment planning in soft tissue sarcomas (STS). Image-based models of tumor progression would be critical to personalize the treatment radiation field to the pattern of sarcoma spread.
View Article and Find Full Text PDFFront Neurosci
December 2024
Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, Sherbrooke, QC, Canada.
Traditional Diffusion Tensor Imaging (DTI) metrics are affected by crossing fibers and lesions. Most of the previous tractometry works use the single diffusion tensor, which leads to limited sensitivity and challenging interpretation of the results in crossing fiber regions. In this work, we propose a tractometry pipeline that combines white matter tractography with multi-tensor fixel-based metrics.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria.
Background: There is evidence that iron metabolism may play a role in the underlying pathophysiological mechanism of migraine. Studies using (=1/ ) relaxometry, a common MRI-based iron mapping technique, have reported increased values in various brain structures of migraineurs, indicating iron accumulation compared to healthy controls.
Purpose: To investigate whether there are short-term changes in during a migraine attack.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!