We analyse a model consisting of a population of individuals which is subdivided into a finite set of demes, each of which has a fixed but differing number of individuals. The individuals can reproduce, die and migrate between the demes according to an arbitrary migration network. They are haploid, with two alleles present in the population; frequency-independent selection is also incorporated, where the strength and direction of selection can vary from deme to deme. The system is formulated as an individual-based model and the diffusion approximation systematically applied to express it as a set of nonlinear coupled stochastic differential equations. These can be made amenable to analysis through the elimination of fast-time variables. The resulting reduced model is analysed in a number of situations, including migration-selection balance leading to a polymorphic equilibrium of the two alleles and an illustration of how the subdivision of the population can lead to non-trivial behaviour in the case where the network is a simple hub. The method we develop is systematic, may be applied to any network, and agrees well with the results of simulations in all cases studied and across a wide range of parameter values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2014.05.033 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Orthopaedic and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
Background: Osteoporosis, a skeletal disorder affecting nearly 20% of the global population, poses a significant health concern, with osteoporotic vertebral body fractures (VBF) representing a common clinical manifestation. The impact of osteoporotic sintering fractures in the thoracolumbar spine on the sagittal lumbar profile is incompletely understood and may lead to the onset of clinical symptoms in previously asymptomatic patients.
Methods: This retrospective single-center study analyzed data from patients presenting with osteoporotic spine fractures between 2017 and 2022.
J Cardiothorac Surg
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China.
Background: Near-infrared spectroscopy (NIRS) enables a non-invasive measurement of tissue oxygen saturation (StO) in regions illuminated by near-infrared lights. Vascular occlusion test (VOT) serves as a model to artificially induce forearm ischemia-reperfusion. The combination of StO monitoring and VOT allows for dynamic evaluation of the balance between oxygen delivery and consumption in tissue, as well as the functional reserve of microcirculation.
View Article and Find Full Text PDFHum Genomics
January 2025
Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.
View Article and Find Full Text PDFTrials were inconsistent while reporting findings on the benefits of the intermittent regimen. Recent conclusive evidence to show overall effect was limited. This review compared intermittent and daily iron folic acid supplementation (IFAS) on pregnancy outcomes.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China.
Background: Remnant cholesterol (remnant-C) contributes to atherosclerotic cardiovascular disease (ASCVD), particularly in individuals with impaired glucose metabolism. Patients with impaired glucose metabolism and ASCVD remain at significant residual risk after coronary artery bypass grafting (CABG). However, the role of remnant-C in this population has not yet been investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!