Functional conformations for pyruvate carboxylase during catalysis explored by cryoelectron microscopy.

Structure

Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, 48160 Derio, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain. Electronic address:

Published: June 2014

The tetrameric enzyme pyruvate carboxylase (PC), a biotin-dependent carboxylase, produces oxaloacetate by two consecutive reactions that take place in distant active sites. Previous crystal structures revealed two different configurations for PC tetramers, the so-called symmetric and asymmetric, which were understood as characteristic molecular architectures for PC from different organisms. We have analyzed PC samples from Staphylococcus aureus while the enzyme generates oxaloacetate, expecting PC tetramers to display the conformational landscape relevant for its functioning. Using cryoelectron microscopy (cryo-EM) and sorting techniques, we detect previously defined symmetric and asymmetric architectures, demonstrating that PC maps both arrangements by large conformational changes. Furthermore, we observe that each configuration is coupled to one of the two consecutive enzymatic reactions. The findings describe the structural transitions relevant for the allosteric control of the multifunctional PC and demonstrate that by cryo-EM and classification, we can characterize freely working macromolecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090597PMC
http://dx.doi.org/10.1016/j.str.2014.04.011DOI Listing

Publication Analysis

Top Keywords

pyruvate carboxylase
8
cryoelectron microscopy
8
functional conformations
4
conformations pyruvate
4
carboxylase catalysis
4
catalysis explored
4
explored cryoelectron
4
microscopy tetrameric
4
tetrameric enzyme
4
enzyme pyruvate
4

Similar Publications

Nonalcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disorders following liver transplantation. The prorenin receptor (PRR) plays a role in glucose and lipid metabolism, and the hepatic dysregulation of PRR is associated with the upregulation of several molecular pathways, such as the mammalian target of rapamycin (mTOR) and Peroxisome proliferator-activated receptor (PPAR) that promotes hepatic lipogenesis and leads to lipid accumulation in hepatocytes by upregulation of lipogenic genes. PRR inhibition leads to a reduction in the hepatic expression of sortilin-1 and low-density lipoprotein receptor (LDLR) levels and down-regulation of pyruvate dehydrogenase (PDH) and acetyl-CoA carboxylase (ACC) and reduces fatty acids synthesis in hepatocytes.

View Article and Find Full Text PDF

Relationship Between Mitochondrial Biological Function and Breast Cancer: An Approach Based on Mendelian Randomization Analysis.

Breast J

January 2025

Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

This study aims to investigate the potential causal link between mitochondrial function and breast cancer using the Mendelian randomization (MR) analysis. The data used for this study were obtained from genomewide association studies (GWAS) databases on mitochondrial biological function and breast cancer. Mitochondrial function was considered the exposure variable, breast cancer the outcome variable, and specific single nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs).

View Article and Find Full Text PDF

Hydrolysis of the acetyl-CoA allosteric activator by Staphylococcus aureus pyruvate carboxylase.

Arch Biochem Biophys

December 2024

Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA. Electronic address:

Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to oxaloacetate which serves as an important anaplerotic reaction to replenish citric acid cycle intermediates. In most organisms, the PC-catalyzed reaction is allosterically activated by acetyl-coenzyme A. It has previously been reported that vertebrate PC can catalyze the hydrolysis of acetyl-CoA, offering a potential means for the enzyme to attenuate its allosteric activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!