Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR.

Structure

Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

Published: June 2014

Most macromolecular X-ray structures are determined from cryocooled crystals, but it is unclear whether cryocooling distorts functionally relevant flexibility. Here we compare independently acquired pairs of high-resolution data sets of a model Michaelis complex of dihydrofolate reductase (DHFR), collected by separate groups at both room and cryogenic temperatures. These data sets allow us to isolate the differences between experimental procedures and between temperatures. Our analyses of multiconformer models and time-averaged ensembles suggest that cryocooling suppresses and otherwise modifies side-chain and main-chain conformational heterogeneity, quenching dynamic contact networks. Despite some idiosyncratic differences, most changes from room temperature to cryogenic temperature are conserved and likely reflect temperature-dependent solvent remodeling. Both cryogenic data sets point to additional conformations not evident in the corresponding room temperature data sets, suggesting that cryocooling does not merely trap preexisting conformational heterogeneity. Our results demonstrate that crystal cryocooling consistently distorts the energy landscape of DHFR, a paragon for understanding functional protein dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082491PMC
http://dx.doi.org/10.1016/j.str.2014.04.016DOI Listing

Publication Analysis

Top Keywords

data sets
16
conformational heterogeneity
12
crystal cryocooling
8
cryocooling distorts
8
model michaelis
8
michaelis complex
8
room temperature
8
distorts conformational
4
heterogeneity model
4
complex dhfr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!