In order to understand the effect of methyl substitution patterns on the initial excited-state structural dynamics of uracil derivatives, we measured the resonance Raman spectra of 5,6-dimethyluracil (5,6-DMU). The results show that the resonance Raman spectrum is a combination of that of 5-methyl- and 6-methyluracil. The resonance Raman excitation profiles (RREPs) and absorption spectrum are simulated with a self-consistent, time-dependent formalism to yield the excited-state slopes and broadening parameters. The initial excited-state structural dynamics occur primarily along the C5═C6 stretching mode, as expected, but with lesser excited-state slopes along each mode compared to 5-methyluracil and 6-methyluracil. This study along with previous experiments with different uracil derivatives show that the presence and positions of the methyl groups seems to determine the partitioning of initial excited-state structural dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp412747c | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.
Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, University of Northern BC, Canada.
Photofragment translational spectroscopy has been used to characterize the energetics and the cross sections for photodissociation of CHI and CFI adsorbed on thin films of a variety of aromatic molecules, initiated by near-UV light. Thin films (nominally 10 monolayers) of benzene, five substituted benzenes and two naphthalenes have been employed to study systematic changes in the photochemical activity. Illumination of these systems with 248 nm light is found to result in a dissociation process for the CHI and CFI mediated by initial absorption in the aromatic thin film, followed by electronic energy transfer (EET) to the dissociating species.
View Article and Find Full Text PDFPhotosynth Res
February 2025
Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russian Federation.
The initial electron transfer (ET) processes in reaction centers (RCs) of Chloroflexus (Cfl.) aurantiacus were studied at 295 K using femtosecond transient absorption (TA) difference spectroscopy. Particular attention was paid to the decay kinetics of the primary electron donor excited state (P) and the formation/decay of the absorption band of the monomeric bacteriochlorophyll a anion (B) at ~ 1035 nm, which reflects the dynamics of the charge-separated state PB.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Proton transfer processes form the foundation of many chemical processes. In excited-state intramolecular proton transfer (ESIPT) processes, ultrafast proton transfer is impulsively initiated through light. Here, we explore time-dependent coupled atomic and electronic motions during and following ESIPT through computational time-resolved resonant inelastic X-ray scattering (RIXS).
View Article and Find Full Text PDFNanophotonics
June 2024
Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.
Placing a material inside an optical cavity can enhance transport of excitation energy by hybridizing excitons with confined light modes into polaritons, which have a dispersion that provides these light-matter quasi-particles with low effective masses and very high group velocities. While in experiments, polariton propagation is typically initiated with laser pulses, tuned to be resonant either with the polaritonic branches that are delocalized over many molecules, or with an uncoupled higher-energy electronic excited state that is localized on a single molecule, practical implementations of polariton-mediated exciton transport into devices would require operation under low-intensity incoherent light conditions. Here, we propose to initiate polaritonic exciton transport with a photo-acid, which upon absorption of a photon in a spectral range not strongly reflected by the cavity mirrors, undergoes ultra-fast excited-state proton transfer into a red-shifted excited-state photo-product that can couple collectively with a large number of suitable dye molecules to the modes of the cavity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!