A novel LC-MS/MS method has been developed for the determination of 13 aminoglycoside antibiotics in meat products. Among the chromatographic columns tested, the mixed-mode Obelisc R provided the best performance. Electrospray has been used for the coupling of the LC and the effect of temperature on the ionization has been evaluated. The mass spectra of AGs have been studied in order to select the most adequate precursor and product ions for quantitation and confirmation in SRM mode, showing that the single charged [M+H](+) provided better precisions than the double charged [M+2H](2+). Accurate mass measurements have been performed in order to confirm the molecular composition of the product ions, allowing the establishment of a new mechanism for some product ions of STR and DHSTR. A sample treatment based on an extraction and a SPE clean-up has been applied to a wide variety of meat products such as frankfurters; sausages; and minced meat of pork, veal, and chicken. Method limits of quantitation in the low microgram per kilogram level (1-50 μg kg(-1)), precisions %RSD below 15 % and accuracies expressed as relative errors below 23 % have been obtained, making the proposed method suitable for routine analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-014-7912-7DOI Listing

Publication Analysis

Top Keywords

product ions
12
meat products
8
mixed-mode liquid
4
liquid chromatography
4
chromatography coupled
4
coupled tandem
4
tandem mass
4
mass spectrometry
4
spectrometry analysis
4
analysis aminoglycosides
4

Similar Publications

Laser Wakefield Acceleration of Ions with a Transverse Flying Focus.

Phys Rev Lett

December 2024

Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.

The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100  MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.

View Article and Find Full Text PDF

Endophytic actinomycetes are potential sources of novel pharmaceutically active metabolites, significantly advancing natural product research. In the present investigation, secondary metabolites from two endophytic actinomycetes, Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, isolated from medicinal plant taxa, Globba marantina, and Selaginella kraussiana, exhibited broad-spectrum bioactivity. Ethyl Acetate (EA) extract of SK5 showed antimicrobial activity against nine human pathogens, including Methicillin-resistant Staphylococcus aureus (MRSA), Candida tropicalis, and C.

View Article and Find Full Text PDF

Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra.

View Article and Find Full Text PDF

Introduction: Antisense oligonucleotides (ASOs) have shown promise in reducing amyloid precursor protein (APP) levels in neurons, but their effects in astrocytes, key contributors to neurodegenerative diseases, remain unclear. This study evaluates the efficacy of APP ASOs in astrocytes derived from an individual with Down syndrome (DS), a population at high risk for Alzheimer's disease (AD).

Methods: Human induced pluripotent stem cells (hiPSCs) from a healthy individual and an individual with DS were differentiated into astrocytes.

View Article and Find Full Text PDF

Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!