Role of the primate ventral tegmental area in reinforcement and motivation.

Curr Biol

Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Published: June 2014

Monkey electrophysiology suggests that the activity of the ventral tegmental area (VTA) helps regulate reinforcement learning and motivated behavior, in part by broadcasting prediction error signals throughout the reward system. However, electrophysiological studies do not allow causal inferences regarding the activity of VTA neurons with respect to these processes because they require artificial manipulation of neuronal firing. Rodent studies fulfilled this requirement by demonstrating that electrical and optogenetic VTA stimulation can induce learning and modulate downstream structures. Still, the primate dopamine system has diverged significantly from that of rodents, exhibiting greatly expanded and uniquely distributed cortical and subcortical innervation patterns. Here, we bridge the gap between rodent perturbation studies and monkey electrophysiology using chronic electrical microstimulation of macaque VTA (VTA-EM). VTA-EM was found to reinforce cue selection in an operant task and to motivate future cue selection using a Pavlovian paradigm. Moreover, by combining VTA-EM with concurrent fMRI, we demonstrated that VTA-EM increased fMRI activity throughout most of the dopaminergic reward system. These results establish a causative role for primate VTA in regulating stimulus-specific reinforcement and motivation as well as in modulating activity throughout the reward system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698409PMC
http://dx.doi.org/10.1016/j.cub.2014.04.044DOI Listing

Publication Analysis

Top Keywords

reward system
12
role primate
8
ventral tegmental
8
tegmental area
8
reinforcement motivation
8
monkey electrophysiology
8
cue selection
8
vta
5
primate ventral
4
area reinforcement
4

Similar Publications

Debilitating anxiety is pervasive in the modern world. Choices to approach or avoid are common in everyday life and excessive avoidance is a cardinal feature of all anxiety disorders. Here, we used intracranial EEG to define a distributed prefrontal-limbic circuit dynamics supporting approach and avoidance.

View Article and Find Full Text PDF

Introduction: Mu-opioid receptors (MORs) are G-coupled protein receptors with a high affinity for both endogenous and exogenous opioids. MORs are widely expressed in the central nervous system (CNS), peripheral organs, and the immune system. They mediate pain and reward and have been implicated in the pathophysiology of opioid, cocaine, and other substance use disorders.

View Article and Find Full Text PDF

Background: In people with substance use disorders (SUDs), stress-exposure can impair executive function, and increase craving and likelihood of drug-use recurrence. Research shows that acute stressors increase drug-seeking behavior; however, mechanisms underlying this effect are incompletely understood. The Competing Neurobehavioral Decisions System theory posits that persons with SUDs may have hyperactive limbic reward circuitry and hypoactive executive control circuitry.

View Article and Find Full Text PDF

Anorexia nervosa (AN) is a severe psychiatric disorder, characterized by restricted eating, fear to gain weight, and a distorted body image. Mu-opioid receptor (MOR) functions as a part of complex opioid system and supports both homeostatic and hedonic control of eating behavior. Thirteen patients with AN and thirteen healthy controls (HC) were included in this study.

View Article and Find Full Text PDF

Neural processing of auditory stimuli in rats: translational aspects using auditory oddball paradigms.

Behav Brain Res

January 2025

Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany; Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany.

Background: The three-class oddball paradigm allows to investigate the processing of behaviorally relevant and irrelevant auditory stimuli. In humans, event-related potentials (ERPs) are used as neural correlate of behavior. We recorded local field potentials (LFPs) within the medial prefrontal cortex (mPFC) in rats during three-class and passive two-class oddball paradigms and analyzed the ERPs focusing on similarities to human recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!