A bacterial strain S8 was isolated from pesticide-contaminated sludge, which showed ability of utilizing p-nitroaniline as the sole source of carbon and nitrogen for growth. Based on the morphology, the physiological and biochemical characteristics, and the 16S rDNA sequence analysis, the strain was identified as Bacillus subtilis. Strain S8 showed high efficiency in p-nitroaniline degradation. 65.6% and 55.8% of p-nitroaniline (60 mg x L(-1) and 120 mg x L(-1)) were degraded by this strain within 72 hours under the optimal conditions of 31degrees C and pH 6.0. Besides, strain S8 degraded 49.5% p-nitroaniline in 7% NaCl and 27.4% p-nitroaniline in 10% NaCl (72 h), which showed that the strain S8 had a high salinity tolerance. When the LC-MS method was used for identification of the biodegradation products, six kinds of degradation products were found, two of which were identified as phenol and hydroquinone. To date, this is the first report on the degradation of p-nitroaniline by Bacillus subtilis. These results suggest that S8 could be a potential candidate for treating p-nitroaniline-contaminated saline wastewater.
Download full-text PDF |
Source |
---|
Dev Comp Immunol
January 2025
Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea. Electronic address:
Host cabbage possesses an endophyte, Bacillus subtilis, which induced immune-priming of the diamondback moth, Plutella xylostella. In contrast, larvae raised under axenic conditions lost the chance to feed the bacteria and were highly susceptible to various pathogens. Addition of B.
View Article and Find Full Text PDFBiophys Rep (N Y)
January 2025
UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA,; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan. Electronic address:
The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia. Electronic address:
Prophages constitute a substantial portion of bacterial genomes, yet their effects on hosts remain poorly understood. We examine the abundance, distribution, and activity of prophages in Bacillus subtilis using computational and laboratory analyses. Genome sequences from the NCBI database and riverbank soil isolates reveal prophages primarily related to mobile genetic elements in laboratory strains.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!