Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

J Magn Reson

Biophysics, The University of Michigan, Ann Arbor, MI 48109-1055, United States; Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States. Electronic address:

Published: July 2014

Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094129PMC
http://dx.doi.org/10.1016/j.jmr.2014.04.020DOI Listing

Publication Analysis

Top Keywords

nmr experiments
12
bone samples
12
data collection
8
collection time
8
spectral resolution
8
magnetic resonance
8
experiments conducted
8
experiments
7
nmr
6
bone
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!