Urban wastewater systems discharge organic matter, nutrients and other pollutants (including toxic substances) to receiving waters, even after removing more than 90% of incoming pollutants from human activities. Understanding their interactions with the receiving water bodies is essential for the implementation of ecosystem-based management strategies. Using mathematical modeling and sensitivity analysis we quantified how 19 operational variables of an urban wastewater system affect river water quality. The mathematical model of the Congost system (in the Besòs catchment, Spain) characterizes the dynamic interactions between sewers, storage tanks, wastewater treatment plants and the river. The sensitivity analysis shows that the use of storage tanks for peak shaving and the use of a connection between two neighboring wastewater treatment plants are the most important factors influencing river water quality. We study how the sensitivity of the water quality variables towards changes in the operational variables varies along the river due to discharge locations and river self-purification processes. We demonstrate how to use the approach to identify interactions and how to discard non-influential operational variables.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2014.04.021 | DOI Listing |
Environ Res
January 2025
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:
Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).
View Article and Find Full Text PDFWater Res
January 2025
School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
Due to the global outbreaks caused by pathogens, disinfection has attracted widespread attention, especially as the final inactivation step in wastewater treatment plants (WWTPs). Ultraviolet (UV) radiation is regarded as one of low carbon disinfection methods without chemical agents, but in practice, the effects are sometimes unsatisfactory, e.g.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China. Electronic address:
Both mechanical models and machine learning-based models are widely utilized for real-time dynamic control; however, their implementation in the water sector often incurs significant data and computational costs. To address these challenges, this study introduces an innovative feature extraction method designed to enhance the cost-effectiveness of dynamic control in wastewater treatment plants. The proposed method extracts dynamic features from time-series data of key substrate variables to construct a data-driven model and develop real-time control strategies.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Departmemt of Civil Engineering, National Institute of Technology Andhra Pradesh, India. Electronic address:
Microplastics (MPs) are a growing environmental issue because of their widespread prevalence and their long-term effects on ecosystems and human health. Global studies have identified MPs in various aquatic environments, such as lake, rivers, estuaries, wastewater, and oceans. Although most MPs originate from urban surface water sources, the specific intensity, characteristics, and associated risk assessments remain unclear.
View Article and Find Full Text PDFSci Total Environ
January 2025
Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland.
Urban water environments, including canals, harbours and estuaries are susceptible to contamination with antimicrobials and drug-resistant bacteria through domestic and industrial wastewater discharges and storm water overflows. There is potential for wildlife using these waters to acquire and transmit drug-resistant bacteria and antimicrobial resistance genes (ARGs) of clinical importance. This study aimed to assess clinically important drug-resistant bacteria in urban waterfowl, particularly mute swans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!