A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of distinct ChAT⁺ neurons and activity-dependent control of postnatal SVZ neurogenesis. | LitMetric

Identification of distinct ChAT⁺ neurons and activity-dependent control of postnatal SVZ neurogenesis.

Nat Neurosci

1] Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA. [2] Neurobiology Graduate Training Program, Duke University School of Medicine, Durham, North Carolina, USA. [3] Brumley Neonatal Perinatal Research Institute, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA. [4] Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA. [5] Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA. [6] Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, North Carolina, USA.

Published: July 2014

Postnatal and adult subventricular zone (SVZ) neurogenesis is believed to be primarily controlled by neural stem cell (NSC)-intrinsic mechanisms, interacting with extracellular and niche-driven cues. Although behavioral experiments and disease states have suggested possibilities for higher level inputs, it is unknown whether neural activity patterns from discrete circuits can directly regulate SVZ neurogenesis. We identified a previously unknown population of choline acetyltransferase (ChAT)(+) neurons residing in the rodent SVZ neurogenic niche. These neurons showed morphological and functional differences from neighboring striatal counterparts and released acetylcholine locally in an activity-dependent fashion. Optogenetic inhibition and stimulation of subependymal ChAT(+) neurons in vivo indicated that they were necessary and sufficient to control neurogenic proliferation. Furthermore, whole-cell recordings and biochemical experiments revealed direct SVZ NSC responses to local acetylcholine release, synergizing with fibroblast growth factor receptor activation to increase neuroblast production. These results reveal an unknown gateway connecting SVZ neurogenesis to neuronal activity-dependent control and suggest possibilities for modulating neuroregenerative capacities in health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122286PMC
http://dx.doi.org/10.1038/nn.3734DOI Listing

Publication Analysis

Top Keywords

svz neurogenesis
16
activity-dependent control
8
chat+ neurons
8
svz
6
identification distinct
4
distinct chat⁺
4
neurons
4
chat⁺ neurons
4
neurons activity-dependent
4
control postnatal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!