Purpose: To develop an MRI/optical multimodal imaging probe based on dye-conjugated iron oxide/silica core/shell nanoparticle, and investigate the distance-dependent fluorescence quenching through careful control of the distance between the iron oxide core and fluorescent dyes.
Methods: Different size of core/shell nanoparticles were prepared by varying the silica shell width. PEGylation on the surface of silica shell was followed to improve the stability of particles in the physiological condition. In vitro cytotoxicity was evaluated by the MTT assay on a HeLa cell line and in vivo imaging of subcutaneous SCC7 xenografted mice was performed using MRI/optical imaging modalities.
Results: Diameter and ζ-potential of the nanoparticles were measured, and TEM images demonstrated the mono-disperse nature of the particles. Quenching efficiency of the dyes on the surface was nearly 100% in the smallest nanoparticle, while almost no quenching effect was observed for the largest nanoparticle. In vitro cytotoxicity showed nearly 90% cell viability at 0.15 Fe mg/mL, a comparable concentration for clinical use. The tumor area was significantly darkened after the nanoparticle injection due to the high transverse relaxivity value of the nanoparticles. Fluorescence signal was affected by the particle size due to the distance-dependent quenching/dequenching behaviour.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-014-1426-z | DOI Listing |
Sci Rep
December 2024
Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFBiotechnol Rep (Amst)
March 2025
Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.
Current downstream processing of monoclonal antibodies (mAbs) is limited in throughput and requires harsh pH conditions for mAb elution from Protein A affinity ligands. The use of an engineered calcium-dependent ligand (Z) in magnetic separation applications promises improvements due to mild elution conditions, fast processability, and process integration prospects. In this work, we synthesized and evaluated three magnetic nanoparticle types immobilized with the cysteine-tagged ligand Z-cys.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania.
Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO).
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
Silica shell is considered to be a promising design that enhances nanocomposite stability, cellular internalization, and consequentially therapeutic impacts by overcoming their aggregation under physiological conditions. This study addressed synthesizing silica-layered iron oxide-based nanoparticles (SCINPs) with different shell thicknesses (1-SCINPs, 2-SCINPs, 3-SCINPs, and 4-SCINPs). Also, the impact of shell thickness on the nanoparticle's cellular internalization and the radio-sensitizing effect of prepared nano-formulations were assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!