Cancer chemotherapy is typically toxic. This problem could be addressed by using differences between cancer and normal cells for controlled delivery of drugs to cancer cells. One such difference is the ubiquitously elevated glutathione expression in cancer cells. We report a simple and versatile synthesis of water-soluble gold nanoparticles passivated with amine-containing molecules, which allow for controlled drug release via ligand exchange with bio-available glutathione. Taking methotrexate-passivated gold nanoparticles (Au:MTX) as an example, drug delivery and controlled release via glutathione-mediated ligand exchange was evaluated. Furthermore, the possibility of using Au:MTX to improve therapeutic index in acute myeloid leukemia (AML) models was examined in vitro and in vivo. Au:MTX exhibited cancer selectivity in vitro. Au:MTX had an elevated potency toward an AML cell line THP-1 in a dosage range of 1-5 nM, and therefore an enhanced delivery of drug, whereas normal hematopoietic stem/progenitor cell (HSPC) growth was minimally affected by Au:MTX and MTX treatments within the same range of dosage. In vivo efficacy and safety of Au:MTX was evaluated in a murine xenotransplant model of primary human AML. Au:MTX treatment, compared to control groups including MTX-only and Au nanoparticle-only treatments, produced better leukemia suppression without added toxicity, indicating an enhanced therapeutic index.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1535370214536648 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!