David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey.

Naturwissenschaften

Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic,

Published: July 2014

It is rare to find a true predator that repeatedly and routinely kills prey larger than itself. A solitary specialised ant-eating spider of the genus Zodarion can capture a relatively giant prey. We studied the trophic niche of this spider species and investigated its adaptations (behavioural and venomic) that are used to capture ants. We found that the spider captures mainly polymorphic Messor arenarius ants. Adult female spiders captured large morphs while tiny juveniles captured smaller morphs, yet in both cases ants were giant in comparison with spider size. All specimens used an effective prey capture strategy that protected them from ant retaliation. Juvenile and adult spiders were able to paralyse their prey using a single bite. The venom glands of adults were more than 50 times larger than those of juvenile spiders, but the paralysis latency of juveniles was 1.5 times longer. This suggests that this spider species possesses very potent venom already at the juvenile stage. Comparison of the venom composition between juvenile and adult spiders did not reveal significant differences. We discovered here that specialised capture combined with very effective venom enables the capture of giant prey.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00114-014-1189-8DOI Listing

Publication Analysis

Top Keywords

capture giant
12
giant prey
12
potent venom
8
ant-eating spider
8
enables capture
8
spider species
8
juvenile adult
8
adult spiders
8
spider
6
capture
6

Similar Publications

The mutually antagonistic relationship of atypical protein kinase C (aPKC) and partitioning-defective protein 6 (Par6) with the substrate lethal (2) giant larvae (Lgl) is essential for regulating polarity across many cell types. Although aPKC-Par6 phosphorylates Lgl at three serine sites to exclude it from the apical domain, aPKC-Par6 and Lgl paradoxically form a stable kinase-substrate complex, with conflicting roles proposed for Par6. We report the structure of human aPKCι-Par6α bound to full-length Llgl1, captured through an aPKCι docking site and a Par6 contact.

View Article and Find Full Text PDF

Interaction of an Oomycete Nep1-like Cytolysin with Natural and Plant Cell-Mimicking Membranes.

J Membr Biol

December 2024

Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.

Article Synopsis
  • Plants face attacks from pathogens that use effectors like necrosis- and ethylene-inducing peptide-1-like proteins (NLPs) to invade and damage them.
  • NLPs, known for causing cell death and tissue damage, disrupt the plant's plasma membrane through unique mechanisms that create small, temporary membrane ruptures.
  • Recent research utilized confocal fluorescence microscopy to analyze how NLP interacts with model plant cell membranes, revealing that NLP's permeabilization effects depend on its concentration and time of exposure, and confirming its binding and structural changes on these membranes.
View Article and Find Full Text PDF

The ovary is one of the first organs to exhibit signs of aging, characterized by reduced tissue function, chronic inflammation, and fibrosis. Multinucleated giant cells (MNGCs), formed by macrophage fusion, typically occur in chronic immune pathologies, including infectious and non-infectious granulomas and the foreign body response , but are also observed in the aging ovary . The function and consequence of ovarian MNGCs remain unknown as their biological activity is highly context-dependent, and their large size has limited their isolation and analysis through technologies such as single-cell RNA sequencing.

View Article and Find Full Text PDF

Phase Engineering of Giant Second Harmonic Generation in BiOSe.

Adv Mater

December 2024

Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, P. R. China.

2D materials with remarkable second-harmonic generation (SHG) hold promise for future on-chip nonlinear optics. Relevant materials with both giant SHG response and environmental stability are long-sought targets. Here, the enormous SHG from the phase engineering of a high-performance semiconductor, BiOSe (BOS), under uniaxial strain, is demonstrated.

View Article and Find Full Text PDF

Design of Two-Dimensional Hybrid Perovskites with Giant Spin Splitting and Persistent Spin Textures.

J Am Chem Soc

December 2024

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.

Semiconductors with large energetic separation Δ of energy sub-bands with distinct spin expectation values (spin textures) represent a key target to enable control over spin transport and spin-optoelectronic properties. While the paradigmatic case of symmetry-dictated Rashba spin splitting and associated spin textures remains the most explored pathway toward designing future spin-transport-based quantum information technologies, controlling spin physics beyond the Rashba paradigm by accessing strategically targeted crystalline symmetries holds significant promise. In this paper, we show how breaking the traditional paradigm of octahedron-rotation based structure distortions in 2D organic-inorganic perovskites (2D-OIPs) can facilitate exceptionally large spin splittings (Δ > 400 meV) and spin textures with extremely short spin helix lengths ( ∼ 5 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!