Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments.

Am J Physiol Lung Cell Mol Physiol

Division of Sports Medicine, Department of Family Medicine, Sports Health & Performance Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio;

Published: August 2014

Cigarette smoking (CS) can impact the immune system and induce pulmonary disorders such as chronic obstructive pulmonary disease (COPD), which is currently the fourth leading cause of chronic morbidity and mortality worldwide. Accordingly, the most significant risk factor associated with COPD is exposure to cigarette smoke. The purpose of the present study is to provide an updated overview of the literature regarding the effect of CS on the immune system and lungs, the mechanism of CS-induced COPD and oxidative stress, as well as the available and potential treatment options for CS-induced COPD. An extensive literature search was conducted on the PubMed/Medline databases to review current COPD treatment research, available in the English language, dating from 1976 to 2014. Studies have investigated the mechanism by which CS elicits detrimental effects on the immune system and pulmonary function through the use of human and animal subjects. A strong relationship among continued tobacco use, oxidative stress, and exacerbation of COPD symptoms is frequently observed in COPD subjects. In addition, therapeutic approaches emphasizing smoking cessation have been developed, incorporating counseling and nicotine replacement therapy. However, the inability to reverse COPD progression establishes the need for improved preventative and therapeutic strategies, such as a combination of intensive smoking cessation treatment and pharmaceutical therapy, focusing on immune homeostasis and redox balance. CS initiates a complex interplay between oxidative stress and the immune response in COPD. Therefore, multiple approaches such as smoking cessation, counseling, and pharmaceutical therapies targeting inflammation and oxidative stress are recommended for COPD treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00330.2013DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
immune system
12
smoking cessation
12
copd
11
cigarette smoking
8
stress immune
8
immune response
8
response copd
8
cs-induced copd
8
copd treatment
8

Similar Publications

NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo.

Biomacromolecules

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI.

View Article and Find Full Text PDF

Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.

View Article and Find Full Text PDF

Background: Unhealthy sleep and exposures to oxidative factors are both associated with poor cognitive performance (PCP), but limited evidence has been found regarding the relationship between sleep patterns and oxidative factor exposures independently or jointly with the risk of PCP.

Methods: We analyzed data from 2249 adults aged ≥60 years in the National Health and Nutrition Examination Survey (NHANES) database (2011-2014). Self-reported questionnaires were used to collect data on sleep duration and sleep disorder, categorizing sleep duration into three groups based on responses: short (6 hours or less per night), normal (7-8 hours per night), or long (9 hours or more per night).

View Article and Find Full Text PDF

Background: Methotrexate (MTX) is an agent used in the treatment of many neoplastic and non-neoplastic diseases and is known to cause oxidative damage in normal tissues. Curcumin (Cur) is a natural polyphenol compound with powerful antioxidant and antiapoptotic effects. In this study we investigate the effects of Cur on MTX-induced ovarian damage.

View Article and Find Full Text PDF

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!