APOE ε4 is associated with disproportionate progressive hippocampal atrophy in AD.

PLoS One

Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom; Centre for Medical Image Computing, University College London, London, United Kingdom.

Published: January 2015

Objectives: To investigate whether APOE ε4 carriers have higher hippocampal atrophy rates than non-carriers in Alzheimer's disease (AD), mild cognitive impairment (MCI) and controls, and if so, whether higher hippocampal atrophy rates are still observed after adjusting for concurrent whole-brain atrophy rates.

Methods: MRI scans from all available visits in ADNI (148 AD, 307 MCI, 167 controls) were used. MCI subjects were divided into "progressors" (MCI-P) if diagnosed with AD within 36 months or "stable" (MCI-S) if a diagnosis of MCI was maintained. A joint multi-level mixed-effect linear regression model was used to analyse the effect of ε4 carrier-status on hippocampal and whole-brain atrophy rates, adjusting for age, gender, MMSE and brain-to-intracranial volume ratio. The difference in hippocampal rates between ε4 carriers and non-carriers after adjustment for concurrent whole-brain atrophy rate was then calculated.

Results: Mean adjusted hippocampal atrophy rates in ε4 carriers were significantly higher in AD, MCI-P and MCI-S (p≤0.011, all tests) compared with ε4 non-carriers. After adjustment for whole-brain atrophy rate, the difference in mean adjusted hippocampal atrophy rate between ε4 carriers and non-carriers was reduced but remained statistically significant in AD and MCI-P.

Conclusions: These results suggest that the APOE ε4 allele drives atrophy to the medial-temporal lobe region in AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039513PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097608PLOS

Publication Analysis

Top Keywords

hippocampal atrophy
20
ε4 carriers
16
atrophy rates
16
whole-brain atrophy
16
apoe ε4
12
atrophy rate
12
atrophy
10
carriers higher
8
higher hippocampal
8
concurrent whole-brain
8

Similar Publications

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

Objectives: We aim to investigate cognitive phenotype distribution and MRI correlates across pediatric-, elderly-, and adult-onset MS patients as a function of disease duration.

Methods: In this cross-sectional study, we enrolled 1262 MS patients and 238 healthy controls, with neurological and cognitive assessments. A subset of 222 MS patients and 92 controls underwent 3T-MRI scan for brain atrophy and lesion analysis.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is frequently associated with long-term post-stroke cognitive impairment (PSCI) and dementia. While the mechanisms behind PSCI are not fully understood, the brain and cognitive reserve concepts are topics of ongoing research exploring the ability of individuals to maintain intact cognitive performance despite ischemic injuries. Brain reserve refers to the brain's structural capacity to compensate for damage, with markers like hippocampal atrophy and white matter lesions indicating reduced reserve.

View Article and Find Full Text PDF

Walking and Hippocampal Formation Volume Changes: A Systematic Review.

Brain Sci

January 2025

Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK.

Background/objectives: Sustaining the human brain's hippocampus from atrophy throughout ageing is critical. Exercise is proven to be effective in promoting adaptive hippocampal plasticity, and the hippocampus has a bidirectional relationship with the physical environment. Therefore, this systematic review explores the effects of walking, a simple physical activity in the environment, on hippocampal formation volume changes for lifelong brain and cognitive health.

View Article and Find Full Text PDF

Background: There is a paucity of evidence on the association between genetic propensity for hippocampal atrophy with cognitive outcomes. Therefore, we examined the relationship of the polygenic risk score for hippocampal atrophy (PRShp) with the incidence of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) as well as the rates of cognitive decline.

Methods: Participants were drawn from the population-based HELIAD cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!