Variation in antipredator behavior may partially explain the survival differences seen between wild and hatchery trout and salmon. Antipredator behavior is thought to change during the domestication process, along with other traits. Investigations of antipredator behavior could benefit conservation efforts and supplementation programs. Our goal was to characterize the antipredator behavior in clonal rainbow trout lines derived from either wild or hatchery populations and identify genetic loci associated with variation between lines. We identified several behaviors that varied between clonal lines and QTL for several behavioral and size traits. Characterizing genetic variation underlying these behaviors may prove valuable in future conservation efforts by enabling monitoring of allele frequencies of loci affecting predation in wild populations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10519-014-9663-9DOI Listing

Publication Analysis

Top Keywords

antipredator behavior
20
wild hatchery
12
rainbow trout
8
clonal lines
8
lines derived
8
derived wild
8
hatchery populations
8
conservation efforts
8
antipredator
5
behavior qtl
4

Similar Publications

Conspicuousness increases the risk of predation. One strategy to reduce this risk is to increase vigilance. We investigated the frequency of head movements as a measure of vigilance at waterholes in two related songbird species that differed in their conspicuousness: the Gouldian finch and the long-tailed finch.

View Article and Find Full Text PDF

Among the most immediate drivers of American burying beetle (Nicrophorus americanus Olivier) declines, nontarget toxicity to pesticides is poorly understood. Acute, episodic exposure to neonicotinoid insecticides at environmentally relevant concentrations is linked to negative impacts on beneficial terrestrial insect taxa. Beyond mortality, behavioral indicators of toxicity are often better suited to assess sublethal effects of residual concentrations in the environment.

View Article and Find Full Text PDF

Are domestic chickens born with predator recognition? Validation of a sound playback experiment.

Behav Processes

January 2025

Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China. Electronic address:

Predation risk can influence behavioral decisions of animals in various ways. Prey animals have the opportunity to choose antipredation behaviors and escape strategies only by quickly and accurately identifying predators. As precocial birds, domestic chickens (Gallus gallus domesticus) have no adaptation period after hatching and must immediately survive under predation risk.

View Article and Find Full Text PDF

Parental experiences can alter offspring phenotypes via transgenerational plasticity (TGP), which may prime offspring to adaptively respond to novel stressors, including novel predators. However, we know little about the types of sensory cues (e.g.

View Article and Find Full Text PDF

Strange features are no better than no features: predator recognition by untrained birds.

Anim Cogn

January 2025

Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic.

Predator recognition is essential for prey survival, allowing for appropriate antipredator strategies. Some bird species, such as the red-backed shrike (Lanius collurio), distinguish not only between predators and non-threatening species but also between different predator species. Earlier studies have identified general predator "key features", especially beak shape and talons, as critical for predator recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!