The aim of this study was to evaluate the effectiveness of two retreatment techniques, in terms of the operating time and scanning electron microscopy (SEM) results, in removing three different root canal sealers from root canals that were previously filled with gutta-percha. Sixty extracted single-rooted human premolars were divided into three groups and filled with iRoot SP, MM Seal, and AH Plus sealers, along with gutta-percha, through a lateral compaction technique. Root canal fillings of the samples were removed by ESI ultrasonic tips or R-Endo files. The time to reach the working length was recorded. Longitudinally sectioned samples were examined under SEM magnification. Each picture was evaluated in terms of the residual debris. Data were statistically analyzed with the Kruskall-Wallis test. No statistically significant differences were found in terms of operating time (p>0.05). Significant differences in the number of debris-free dentinal tubules were found among the root canal thirds, but this finding was not influenced by the experimental group (p<0.05). Resin sealer tags were observed inside the dentinal tubules in the MM Seal group. Under the conditions of this study, it may be established that there was no difference among the sealers and retreatment techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/1807-3107bor-2014.vol28.0006 | DOI Listing |
Int J Mol Sci
December 2024
Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
Dental inflammatory diseases remain a challenging clinical issue, whose causes and development are still not fully understood. During dental caries, bacteria penetrate the tooth pulp, causing pulpitis. To prevent pulp necrosis, it is crucial to promote tissue repair by recruiting immune cells, such as macrophages, able to secrete signal molecules for the pulp microenvironment and thus to recruit dental pulp stem cells (DPSCs) in the damaged site.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea.
With the advent of bioceramic sealers, sealers have become a more important filling material for endodontic treatment. When a solid sealer, rather than an elastic gutta-percha, occupies a significant portion of the root canal, it is unclear whether the tooth structure will be strengthened to withstand stress or whether the increased stiffness will transmit the load directly to the entire root, potentially causing root fracture. This study compared the fracture resistance and fracture patterns of roots filled with various root canal sealers, including bioceramic sealers, and each corresponding filling technique.
View Article and Find Full Text PDFIntroduction: This systematic review and meta-analysis assess the impact of the XP-endo Shaper (XPS) on postoperative pain following root canal treatment (RCTs) and compare its efficacy with other endodontic systems.
Methods: A comprehensive literature search was conducted in MEDLINE, Web of Science, Embase, and the Cochrane Library from January 2000 to August 2024. Randomized controlled trials using XPS and reporting postoperative pain were included.
Lasers Med Sci
January 2025
Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
Objective: This study evaluated dentin morphology and pulp cavity temperature changes during nanosecond‑ and microsecond‑pulse Er, Cr: YSGG laser debonding restoration and residual adhesive.
Materials And Methods: Ten caries-free teeth had their enamel removed perpendicular to the long axis, followed by bonding of glass ceramic restorations. The samples were randomly divided into two groups and subjected to Er, Cr: YSGG laser (3 mJ, 100 Hz, 100 ns), (3 mJ, 100 Hz, 150 µs) for debonding of restoration and residual adhesive on dentin surfaces.
J Biomech Eng
January 2025
School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019, USA.
Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!