Polymeric micelles for pH-responsive delivery of cisplatin.

J Drug Target

Faculty of Pharmacy and Pharmaceutical Sciences and.

Published: August 2014

Methoxy poly(ethylene oxide)-block-poly-(α-carboxylate-ε-caprolactone) (PEO-b-PCCL) was used to develop pH-responsive polymeric micelles for the delivery of cisplatin (CDDP). Micelles were prepared through complexation of CDDP with the pendant carboxyl groups on the poly(ε-caprolactone) core, perhaps through coordinate bonding. The obtained micelles were characterized using dynamic light scattering (DLS) measurement for size and stability. The in vitro release of CDDP at different pHs (7.4, 6.0 and 5.0) was evaluated. The in vitro cell uptake as well as cytotoxicity of developed micelles against two breast cancer cell lines, i.e. MDA-MB-435 and MDA-MB-231, were also assessed and compared to free CDDP as control. DLS results showed PEO-b-PCCL to form stable micelles with an average diameter of <50 nm upon complexation with CDDP. Developed polymeric micelles were capable of slowly releasing CDDP in physiological pH. However, CDDP release from polymeric micelles was triggered upon exposure to electrolytes and/or acidic pHs mimicking that of extracellular tumor microenvironment or intracellular organelles. Consistent with the slow release of CDDP from its polymeric micellar formulation, polymeric micellar CDDP exhibited lower cytotoxicity and CDDP intracellular uptake compared to free drug. The results indicate a great potential for the developed formulation in platinum therapy of breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.3109/1061186X.2014.921925DOI Listing

Publication Analysis

Top Keywords

polymeric micelles
8
delivery cisplatin
8
micelles
5
micelles ph-responsive
4
ph-responsive delivery
4
cisplatin methoxy
4
methoxy polyethylene
4
polyethylene oxide-block-poly-α-carboxylate-ε-caprolactone
4
oxide-block-poly-α-carboxylate-ε-caprolactone peo-b-pccl
4
peo-b-pccl develop
4

Similar Publications

Amphiphilic polymers with distinct polarity differences, known as sharp polarity contrast polymers (SPCPs), have gained much attention for their ability to form micelles with low critical micelle concentrations (CMCs) and potential in anticancer drug delivery. This study addresses the limited research on structure-property relationships of SPCPs by developing various SPCPs and exploring their physicochemical properties and biological applications. Specifically, the superhydrophobic aliphatic palmitoyl (Pal) was coupled to the superhydrophilic zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) to form Pal-pMPC diblock copolymers.

View Article and Find Full Text PDF

Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.

View Article and Find Full Text PDF

Sorafenib-Loaded Silica-Containing Redox Nanoparticle Decreases Tumorigenic Potential of Lewis Lung Carcinoma.

Pharmaceutics

January 2025

Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan.

Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Sorafenib was loaded into siRNP via dialysis (sora@siRNP).

View Article and Find Full Text PDF

Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs.

Vaccines (Basel)

December 2024

Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.

The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization.

View Article and Find Full Text PDF

Surfactant chemistry can affect the phenolic foam (PF) properties by controlling the collision and combination of the created bubbles during foam production. The study was accomplished using two surfactant families, nonionic: polysorbate (Tween80) and anionic: sodium and ammonium lauryl sulfates (SLS30 and ALS70) and sodium laureth sulfate (SLES270) to manufacture PF foams. Tween80 and SLS30 resulted in foams with the lowest and highest densities, 20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!