Over the past decade the technology to characterize transcription during embryogenesis has progressed from estimating a single transcript to a reliable description of the entire transcriptome. Northern blots were followed by sequencing ESTs, quantitative real time PCR, cDNA arrays, custom oligo arrays, and more recently, deep sequencing. The amount of information that can be generated is overwhelming. The challenge now is how to glean information from these vast data sets that can be used to understand development and to improve methods for creating and culturing embryos in vitro, and for reducing reproductive loss. The use of ESTs permitted the identification of SPP1 as an oviductal component that could reduce polyspermy. Microarrays identified LDL and NMDA as components to replace BSA in embryo culture media. Deep sequencing implicated arginine, glycine, and folate as components that should be adjusted in our current culture system, and identified a characteristic of embryo metabolism that is similar to cancer and stem cells. Not only will these characterizations aid in improving in vitro production of embryos, but will also be useful for identifying, or creating conditions for donor cells that will be more likely to result in normal development of cloned embryos. The easily found targets have been identified, and now more sophisticated methods are being employed to advance our understanding of embryogenesis. Here the technology to study the global transcriptome is reviewed followed by specific examples of how the technology has been used to understand and improve porcine embryogenesis both in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.anireprosci.2014.04.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!