Context: Disorders characterized by PTH resistance are grouped within the term pseudohypoparathyroidism type I (PHPI). Most subtypes of this disease are caused by genetic or epigenetic changes of the GNAS locus leading to deficiency of the α-subunit of stimulatory G proteins (Gsα). Because the in vitro measured Gsα protein activity is normal in pseudohypoparathyroidism Ic (PHPIc), it had previously been postulated that this subtype is caused by impairment of distinct components of the G protein-signaling pathway. However, recently, pathogenic GNAS mutations in a subset of PHPIc patients were found.

Objective: To clarify the underlying pathogenic mechanism of GNAS exon 1-13 mutation-negative PHPIc cases by investigating the differentially methylated regions of GNAS for epigenetic abnormalities.

Patients And Methods: The methylation pattern of GNAS exons A/B, AS, XL, and NESP from blood-derived leukocytes of 26 PHPIc patients was assessed by pyrosequencing of bisulfite-converted DNA.

Results: Six patients presented with three different patterns of epigenetic changes. One patient had an exclusive loss of methylation of exon A/B associated with a STX16 deletion; four patients had an additional loss of methylation in XL and AS and a gain of methylation in NESP; and one patient presented with partial GNAS methylation changes concerning all differentially methylated regions.

Conclusions: Our results confirm that PHPIc is a heterogeneous entity caused in part by impaired Gsα function, not only due to mutations, but also due to abnormal imprinting of GNAS. However, in the majority of cases of PHPIc, the underlying etiopathogenesis remains elusive.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2013-4477DOI Listing

Publication Analysis

Top Keywords

epigenetic changes
12
gnas
8
changes gnas
8
pseudohypoparathyroidism type
8
phpic patients
8
differentially methylated
8
loss methylation
8
phpic
6
patients
5
methylation
5

Similar Publications

Estimates and trends in death and disability from atrial fibrillation/atrial flutter due to high sodium intake, China, 1990 to 2019.

BMC Cardiovasc Disord

January 2025

Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences,Hangzhou Institute of Cardiovascular Diseases, Engineering Research Center of Mobile Health Management System & Ministry of Education, Hangzhou Normal University, Hangzhou, 310015, China.

Objective: The effect of sodium intake on atrial fibrillation (AF)/atrial flutter (AFL), with respect to sex and age, has yet to be elucidated. This study aims to compare long-term trends in AF/AFL death and disability due to high sodium intake in China from 1990 to 2019.

Methods: We utilized data from the Global Burden of Disease study to assess the mortality and disability burden of AF/AFL attributable to high sodium intake (> 5 g/d) in China from 1990 to 2019.

View Article and Find Full Text PDF

Leveraging Epigenetic Alterations in Pancreatic Ductal Adenocarcinoma for Clinical Applications.

Semin Cancer Biol

January 2025

Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by late detection and poor prognosis. Recent research highlights the pivotal role of epigenetic alter- ations in driving PDAC development and progression. These changes, in conjunction with genetic mutations, contribute to the intricate molecular landscape of the disease.

View Article and Find Full Text PDF

Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.

View Article and Find Full Text PDF

Automated scoring to assess RAD51-mediated homologous recombination in ovarian patient-derived tumor organoids.

Lab Invest

January 2025

Université de Caen Normandie, INSERM U1086 ANTICIPE, Caen, France; UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France; Université de Caen Normandie, US PLATON- ORGAPRED core facility, Caen, France; Université de Caen Normandie, US PLATON, UNICANCER, Comprehensive Cancer Center François Baclesse- Biological Resource Center 'OvaRessources', Caen, France. Electronic address:

PARP inhibitors (PARPi) have been shown to improve progression-free survival, particularly in homologous recombination deficient (HRD) ovarian cancers. Identifying patients eligible to PARPi is currently based on next-generation sequencing (NGS), but the persistence of genomic scars in tumors after restoration of HR or epigenetic changes can be a limitation. Functional assays could thus be used to improve this profiling and faithfully identify HRD tumors.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!