A method has been developed to fabricate organic-inorganic hybrid heterojunction solar cells based on n-type silicon nanowire (SiNW) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) hybrid structures by evacuating the PEDOT:PSS solution with dip-dropping on the top of SiNWs before spin-coating (solution-evacuating). The coverage and contact interface between PEDOT:PSS and SiNW arrays can be dramatically enhanced by optimizing the solution-evacuated time. The maximum power conversion efficiency (PCE) reaches 9.22% for a solution-evacuated time of 2 min compared with 5.17% for the untreated pristine device. The improvement photovoltaic performance is mainly attributed to better organic coverage and contact with an n-type SiNW surface.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.39.003219DOI Listing

Publication Analysis

Top Keywords

photovoltaic performance
8
solar cells
8
coverage contact
8
solution-evacuated time
8
enhanced photovoltaic
4
performance organic/silicon
4
organic/silicon nanowire
4
nanowire hybrid
4
hybrid solar
4
cells solution-evacuated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!