Background: Activation of fibroblast growth factor receptor (FGFR)-dependent signalling by FGF23 may contribute to the complex pathogenesis of left ventricular hypertrophy (LVH) in chronic kidney disease (CKD). Pan FGFR blockade by PD173074 prevented development of LVH in the 5/6 nephrectomy rat model of CKD, but its ability to treat and reverse established LVH is unknown.
Methods: CKD was induced in rats by 5/6 nephrectomy. Two weeks later, rats began treatment with vehicle (0.9% NaCl) or PD173074, 1 mg/kg once-daily for 3 weeks. Renal function was determined by urine and blood analyses. Left ventricular (LV) structure and function were determined by echocardiography, histopathology, staining for myocardial fibrosis (Sirius-Red) and investigating cardiac gene expression profiles by real-time PCR.
Results: Two weeks after inducing CKD by 5/6 nephrectomy, rats manifested higher (mean ± SEM) systolic blood pressure (208 ± 4 versus 139 ± 3 mmHg; P < 0.01), serum FGF23 levels (1023 ± 225 versus 199 ± 9 pg/mL; P < 0.01) and LV mass (292 ± 9 versus 220 ± 3 mg; P < 0.01) when compared with sham-operated animals. Thereafter, 3 weeks of treatment with PD173074 compared with vehicle did not significantly change blood pressure, kidney function or metabolic parameters, but significantly reduced LV mass (230 ± 14 versus 341 ± 33 mg; P < 0.01), myocardial fibrosis (2.5 ± 0.7 versus 5.4 ± 0.95% staining/field; P < 0.01) and cardiac expression of genes associated with pathological LVH, while significantly increasing ejection fraction (18 versus 2.5% post-treatment increase; P < 0.05).
Conclusions: FGFR blockade improved cardiac structure and function in 5/6 nephrectomy rats with previously established LVH. These data support FGFR activation as a potentially modifiable, blood pressure-independent molecular mechanism of LVH in CKD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425841 | PMC |
http://dx.doi.org/10.1093/ndt/gfu190 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, South Korea.
Podocyte injury and proteinuria in glomerular disease are critical indicators of acute kidney injury progression to chronic kidney disease. Renal mitochondrial dysfunction, mediated by intracellular calcium levels and oxidative stress, is a major contributor to podocyte complications. Despite various strategies targeting mitochondria to improve kidney function, effective treatments remain lacking.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Nephrology, Affiliated Hospital of Hebei University, Baoding, China.
Klotho has been importantly linked to atherosclerosis, but little is known about its specific role. This study investigates the mechanism by which Klotho enhances the stability of atherosclerotic plaques in chronic kidney disease. apoE-/- knockout mice and C57BL/6 mice underwent 5/6 nephrectomy and then klotho-NC and klotho-mimic groups were set up to be fed a high-fat chow diet and a dummy group was created to be fed a normal chow diet.
View Article and Find Full Text PDFJ Endourol
December 2024
Department of Urology, Mayo Clinic, Jacksonville, Florida, USA.
To analyze the association of patient characteristics on operating room (OR) times for robotic-assisted partial nephrectomies (RAPNs). In total, 248 consecutive RAPNs were performed by a single surgeon from October 2018 to August 2022. Data were collected on the following patient factors: sex, age, race, weight, body mass index (BMI), diabetes, hypertension (HTN), tumor side, tumor mass, and American Society of Anesthesiologists (ASA) score.
View Article and Find Full Text PDFFASEB J
December 2024
Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
Vascular calcification (VC), associated with high cardiovascular mortality in patients with chronic kidney disease (CKD), involves osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). O-GlcNAcylation, a dynamic post-translational modification, is closely linked to cardiovascular diseases, including VC. However, the exact role and molecular mechanism of O-GlcNAc signaling in abnormal mineral metabolism-induced VC remain unclear.
View Article and Find Full Text PDFCan J Urol
December 2024
Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!