A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fuzzy MUAP recognition in HSR-EMG detection basing on morphological features. | LitMetric

Fuzzy MUAP recognition in HSR-EMG detection basing on morphological features.

J Electromyogr Kinesiol

Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH-Aachen University, 52074 Aachen, Germany.

Published: August 2014

The idea of 'besides the MU properties and depending on the recording techniques, MUAPs can have unique pattern' was adopted. The aim of this work was to recognise whether a Laplacian-detected MUAP is isolated or overlapped basing on novel morphological features using fuzzy classifier. Training data set was constructed to elaborate and test the 'if-then' fuzzy rules using signals provided by three muscles: the abductor pollicis brevis (APB), the first dorsal interosseous (FDI) and the biceps brachii (BB) muscles of 11 healthy subjects. The proposed fuzzy classier recognized automatically the isolated MUAPs with a performance of 95.03% which was improved to 97.8% by adjusting the certainty grades of rules using genetic algorithms (GA). Synthetic signals were used as reference to further evaluate the performance of the elaborated classifier. The recognition of the isolated MUAPs depends largely on noise level and is acceptable down to the signal to noise ratio of 20 dB with a detection probability of 0.96. The recognition of overlapped MUAPs depends slightly on the noise level with a detection probability of about 0.8. The corresponding misrecognition is caused principally by the synchronisation and the small overlapping degree.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelekin.2014.04.006DOI Listing

Publication Analysis

Top Keywords

morphological features
8
isolated muaps
8
muaps depends
8
depends noise
8
noise level
8
detection probability
8
fuzzy
4
fuzzy muap
4
muap recognition
4
recognition hsr-emg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!