Loss of ligament graft tension in early postoperative stages following anterior cruciate ligament (ACL) reconstruction can come from a variety of factors, with slow graft integration to bone being widely viewed as a chief culprit. Toward an off-the-shelf ACL graft that can rapidly integrate to host tissue, we have developed a silk-based ACL graft combined with a tricalcium phosphate (TCP)/polyether ether ketone anchor. In the present study we tested the safety and efficacy of this concept in a porcine model, with postoperative assessments at 3months (n=10) and 6months (n=4). Biomechanical tests were performed after euthanization, with ultimate tensile strengths at 3months of ∼370N and at 6months of ∼566N - comparable to autograft and allograft performance in this animal model. Comprehensive histological observations revealed that TCP substantially enhanced silk graft to bone attachment. Interdigitation of soft and hard tissues was observed, with regenerated fibrocartilage characterizing a transitional zone from silk graft to bone that was similar to native ligament bone attachments. We conclude that both initial stability and robust long-term biological attachment were consistently achieved using the tested construct, supporting a large potential for silk-TCP combinations in the repair of the torn ACL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2014.05.015 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
Herein, we present an efficient and practical method for multicomponent carbo-heterofunctionalization of alkenes radical-polar crossover photoredox catalysis. Employing geminal bromonitroalkanes as redox-active reagents with a wide range of O-centered nucleophiles allows rapid access to various 1,3-difunctionalized nitro compounds, including β-nitro ketones, 1,3-nitro alcohols, 1,3-nitro ethers as well as cyclic molecules.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.
View Article and Find Full Text PDFAnticancer Res
January 2025
Eisai Inc., Cambridge, MA, U.S.A.
Background/aim: Preclinical studies were undertaken to investigate whether eribulin's known cytotoxic antimitotic effects are characterized by immunogenic cell death (ICD) as assessed by three established ICD biomarkers: extracellular released ATP, released HMGB1 and cell surface calreticulin.
Materials And Methods: Using BT-549, Hs578T and MCF-7 breast cancer cell lines, antiproliferative IC's of eribulin, five other microtubule targeting agents (MTAs; ER-076349, vinblastine, vinorelbine, paclitaxel, docetaxel) and three DNA damaging agents (DDAs; doxorubicin, cisplatin, oxaliplatin) were determined.
Results: Treatment of cells with 10×IC concentrations of all drugs in serum-free media resulted in time-dependent induction of cytotoxicity over DMSO controls.
Indian J Orthop
January 2025
Department of Orthopaedic Surgery, Hillel Yaffe M.C., 3100 Hadera, Israel.
Objective: To present the clinical result of spinal fixation system made entirely of Carbon-Fiber-Reinforced (CFR)-Hybrid Polyaryl-Ether-Ether-Ketone (PEEK).
Summary Of Background Data: Fusion surgery has been used to treat chronic low back pain caused by degenerative disk disease (DDD). The traditional pedicle screw system made of titanium, though biocompatible, can lead to complications, such as stress shielding and implant failure.
Cureus
November 2024
Department of Removable Prosthodontics, Syrian Arab Republic Damascus University Faculty of Dental Medicine, Damascus, SYR.
Background: Determining the distal cantilever length in All-on-Four (All-on-4) implant-supported prostheses is a major factor in the long-term success of these prostheses. The difference in mechanical properties of materials used in the fabrication of these prostheses, such as polyether ether ketone (PEEK), may have an impact on the determination of the cantilever length that best distributes stress.
Aim: To study the distribution of stress in All-on-4 mandibular prostheses in the bone, implants, and framework according to difference cantilever length in PEEK prosthetic framework using three-dimensional finite element analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!