Effects of prolonged lung inflation or deflation on pulmonary stretch receptor discharge in the alligator (Alligator mississippiensis).

Respir Physiol Neurobiol

Developmental Integrative Biology Research Cluster, Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States. Electronic address:

Published: August 2014

The American alligator (Alligator mississippiensis) is a semi-aquatic diving reptile that has a periodic breathing pattern. Previous work identified pulmonary stretch receptors, that are rapidly and slowly adapting, as well as intrapulmonary chemoreceptors (IPC), sensitive to CO2, that modulate breathing patterns in alligators. The purpose of the present study was to quantify the effects of prolonged lung inflation and deflation (simulated dives) on pulmonary stretch receptors (PSR) and/or IPC discharge characteristics. The effects of airway pressure (0-20 cm H2O), hypercapnia (7% CO2), and hypoxia (5% O2) on dynamic and static responses of PSR were studied in juvenile alligators (mean mass=246 g) at 24°C. Alligators were initially anesthetized with isoflurane, cranially pithed, tracheotomized and artificially ventilated. Vagal afferent tonic and phasic activity was recorded with platinum hook electrodes. Receptor activity was a mixture of slowly adapting PSR (SAR) and rapidly adapting PSR (RAR) with varying thresholds and degrees of adaptation, without CO2 sensitivity. Receptor activity before, during and after 1 min periods of lung inflation and deflation was quantified to examine the effect of simulated breath-hold dives. Some PSR showed a change in dynamic response, exhibiting inhibition for several breaths after prolonged lung inflation. Following 1 min deflation, RAR, but not SAR, exhibited a significant potentiation of burst frequency relative to control. For SAR, the post-inflation receptor inhibition was blocked by CO2 and hypoxia; for RAR, the post-inflation inhibition was potentiated by CO2 and blocked by hypoxia. These results suggest that changes in PSR firing following prolonged inflation and deflation may promote post-dive ventilation in alligators. We hypothesize that PSR in alligators may be involved in recovery of breathing patterns and lung volume during pre- and post-diving behavior and apneic periods in diving reptiles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2014.05.006DOI Listing

Publication Analysis

Top Keywords

lung inflation
16
inflation deflation
16
prolonged lung
12
pulmonary stretch
12
effects prolonged
8
alligator alligator
8
alligator mississippiensis
8
stretch receptors
8
slowly adapting
8
breathing patterns
8

Similar Publications

The mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA.

View Article and Find Full Text PDF

Use of Lung Volume Recruitment Technique in Patients With Chronic Respiratory Disease Among Brazilian Health Professionals.

Pulm Med

January 2025

Post Graduation Department, Escola Superior de Ciências da Saúde (ESCS), Brasilia, Distrito Federal, Brazil.

Lung volume recruitment (LVR) is a stacked-breath assisted inflation technique in which consecutive insufflations are delivered, without exhaling in between, until the maximum tolerable inflation capacity is reached. Although LVR is recommended in some neuromuscular disease guidelines, there is little information detailing when and how allied health professionals (AHPs) prescribe LVR. This study is aimed at describing the use of LVR in practice across Brazil.

View Article and Find Full Text PDF

Effects of Variable Ventilation on Gas Exchange in an Experimental Model of Capnoperitoneum: A Randomized Crossover Study.

Anesth Analg

January 2025

From the Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland.

Background: The rapid advancement of minimally invasive surgical techniques has made laparoscopy a preferred alternative because it reduces postoperative complications. However, inflating the peritoneum with CO2 causes a cranial shift of the diaphragm decreasing lung volume and impairing gas exchange. Additionally, CO2 absorption increases blood CO2 levels, further complicating mechanical ventilation when the lung function is already compromised.

View Article and Find Full Text PDF

Supraglottic airway in neonatal porcine model.

Pediatr Res

January 2025

Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, AB, Canada.

Background: Positive pressure ventilation (PPV) in the delivery room is routinely performed using a face mask attached to a ventilation device. In 2023, the Consensus of Science and Treatment Recommendations for neonatal resuscitation stated that a supraglottic airway (SGA) can be used for PPV if resources and training permits. However, there is very limited data on tidal volume (V) delivery using SGAs.

View Article and Find Full Text PDF

Background: In patients with acute hypoxemic respiratory failure (AHRF) under mechanical ventilation, the change in pressure slope during a low-flow insufflation indicates a global airway opening pressure (AOP) needed to reopen closed airways and may be used for titration of positive end-expiratory pressure.

Objectives: To understand 1) if airways open homogeneously inside the lungs or significant regional AOP variations exist; 2) whether the pattern of the pressure slope change during low-flow insufflation can indicate the presence of regional AOP variations.

Methods: Using electrical impedance tomography, we recorded low-flow insufflation maneuvers (< 10 L/min) starting from end-expiratory positive pressure 0-5 cmHO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!