The one-gene mutation in the tert-butyl hydroperoxide-resistant mutant hyd1-190 of the fission yeast Schizosaccharomyces pombe led to a 4-fold increase in resistance to t-BuOOH and decreased specific concentrations of superoxide and total thiols in comparison with the parental strain hyd+. It suggested an unbalanced redox state of the cells, which induced continuously increased specific activities of glutathione peroxidase, glutathione reductase and glutathione S-transferase and decreased activities of the antioxidant enzymes superoxide dismutases and glucose-6-phosphate dehydrogenase to regulate the redox balance of the mutation-induced permanent, low-level but tolerable internal stress. These results may contribute to the understanding of internal, oxidative stress-related human diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1556/ABiol.65.2014.2.9DOI Listing

Publication Analysis

Top Keywords

unbalanced redox
8
redox state
8
schizosaccharomyces pombe
8
tert-butyl hydroperoxide-resistant
8
hydroperoxide-resistant mutant
8
regulation unbalanced
4
state schizosaccharomyces
4
pombe tert-butyl
4
mutant one-gene
4
one-gene mutation
4

Similar Publications

Oxidative stress, that is, an unbalanced increase in reactive oxygen species (ROS), contributes to tumor-induced immune suppression and limits the efficacy of immunotherapy. Cancer cells have inherently increased ROS production, intracellularly through metabolic perturbations and extracellularly through activation of NADPH oxidases, which promotes cancer progression. Further increased ROS production or impaired antioxidant systems, induced, for example, by chemotherapy or radiotherapy, can preferentially kill cancer cells over healthy cells.

View Article and Find Full Text PDF

Antioxidants have a well-established effect on general health and are essential in preventing oxidative damage to cells by scavenging free radicals. Free radicals are thought to be neutralized by these substances, which include polyphenols, β-carotene, and vitamins C and E, reducing cellular damage. On the other hand, recent data indicates that consuming excessive amounts of antioxidants may have side effects.

View Article and Find Full Text PDF

Urea/Thiourea Imine Linkages Provide Accessible Holes in Flexible Covalent Organic Frameworks and Dominates Self-Adaptivity and Exciton Dissociation.

Angew Chem Int Ed Engl

November 2024

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China.

Unraveling the robust self-adaptivity and minimal energy-dissipation of soft reticular materials for environmental catalysis presents a compelling yet unexplored avenue. Herein, a top-down strategy, tailoring from the unique linkage basis, flexibility degree, skeleton electronics to trace-guest adaptability, is proposed to fill the understanding gap between micro-soft covalent organic frameworks (COFs) and photocatalytic performance. The thio(urea)-basis-dominated linkage within benzotrithiophene-based COFs induce the framework contraction/swelling (intralayer micro-flexibility) in response to tetrahydrofuran or water.

View Article and Find Full Text PDF

Polyphenol-mediated redox-active hydrogel with HS gaseous-bioelectric coupling for periodontal bone healing in diabetes.

Nat Commun

October 2024

Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China.

Excessive oxidative response, unbalanced immunomodulation, and impaired mesenchymal stem cell function in periodontitis in diabetes makes it a great challenge to achieve integrated periodontal tissue regeneration. Here, a polyphenol-mediated redox-active algin/gelatin hydrogel encapsulating a conductive poly(3,4-ethylenedioxythiopene)-assembled polydopamine-mediated silk microfiber network and a hydrogen sulfide sustained-release system utilizing bovine serum albumin nanoparticles is developed. This hydrogel is found to reverse the hyperglycemic inflammatory microenvironment and enhance functional tissue regeneration in diabetic periodontitis.

View Article and Find Full Text PDF

(cassava) roots is a major food crop for its energy content. Leaves contain nutrients and demonstrate biological properties but remain undervalorized. In order to develop a bioguided optimization of cassava nutrition-health properties, we compared the phytochemistry and bioactive potential of cassava root flour extract (CF) with cassava flour extract enriched with 30% leaves powder (CFL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!